53,755 research outputs found
Many-body interactions and correlations in coarse-grained descriptions of polymer solutions
We calculate the two, three, four, and five-body (state independent)
effective potentials between the centers of mass (CM) of self avoiding walk
polymers by Monte-Carlo simulations. For full overlap, these coarse-grained
n-body interactions oscillate in sign as (-1)^n, and decrease in absolute
magnitude with increasing n. We find semi-quantitative agreement with a scaling
theory, and use this to discuss how the coarse-grained free energy converges
when expanded to arbitrary order in the many-body potentials. We also derive
effective {\em density dependent} 2-body potentials which exactly reproduce the
pair-correlations between the CM of the self avoiding walk polymers. The
density dependence of these pair potentials can be largely understood from the
effects of the {\em density independent} 3-body potential. Triplet correlations
between the CM of the polymers are surprisingly well, but not exactly,
described by our coarse-grained effective pair potential picture. In fact, we
demonstrate that a pair-potential cannot simultaneously reproduce the two and
three body correlations in a system with many-body interactions. However, the
deviations that do occur in our system are very small, and can be explained by
the direct influence of 3-body potentials.Comment: 11 pages, 1 table, 9 figures, RevTeX (revtex.cls
Thermodynamics and phase behavior of the lamellar Zwanzig model
Binary mixtures of lamellar colloids represented by hard platelets are
studied within a generalization of the Zwanzig model for rods, whereby the
square cuboids can take only three orientations along the , or axes.
The free energy is calculated within Rosenfeld's ''Fundamental Measure Theory''
(FMT) adapted to the present model. In the one-component limit, the model
exhibits the expected isotropic to nematic phase transition, which narrows as
the aspect ratio ( is the width and the thickness of the
platelets) increases. In the binary case the competition between nematic
ordering and depletion-induced segregation leads to rich phase behaviour.Comment: 9 pages, 6 figure
Random Phase Approximation and Extensions Applied to a Bosonic Field Theory
An application of a self-consistent version of RPA to quantum field theory
with broken symmetry is presented. Although our approach can be applied to any
bosonic field theory, we specifically study the theory in 1+1
dimensions. We show that standard RPA approach leads to an instability which
can be removed when going to a superior version,i.e. the renormalized RPA. We
present a method based on the so-called charging formula of the many electron
problem to calculate the correlation energy and the RPA effective potential.Comment: 30 pages, LaTeX file, 10 figures included, final version accepted in
EPJ
Macroion adsorption: The crucial role of excluded volume and coions
The adsorption of charged colloids (macroions) onto an oppositely charged
planar substrate is investigated theoretically. Taking properly into account
the finite size of the macroions, unusual behaviors are reported. It is found
that the role of the coions (the little salt-ions carrying the same sign of
charge as that of the substrate) is crucial to understand the mechanisms
involved in the process of macroion adsorption. In particular, the coions can
accumulate near the substrate's surface and lead to a counter-intuitive {\it
surface charge amplification}.Comment: 11 pages - 4 figures. To appear in JC
Screened electrostatic interactions between clay platelets
An effective pair potential for systems of uniformly charged lamellar
colloids in the presence of an electrolytic solution of microscopic co- and
counterions is derived. The charge distribution on the discs is expressed as a
collection of multipole moments, and the tensors which determine the
interactions between these multipoles are derived from a screened Coulomb
potential. Unlike previous studies of such systems, the interaction energy may
now be expressed for discs at arbitrary mutual orientation. The potential is
shown to be exactly equivalent to the use of linearized Poisson-Boltzmann
theory.Comment: 23 pages, 10 figures, created with Revtex. To appear in Molecular
Physic
Density profiles and surface tensions of polymers near colloidal surfaces
The surface tension of interacting polymers in a good solvent is calculated
theoretically and by computer simulations for a planar wall geometry and for
the insertion of a single colloidal hard-sphere. This is achieved for the
planar wall and for the larger spheres by an adsorption method, and for smaller
spheres by a direct insertion technique. Results for the dilute and semi-dilute
regimes are compared to results for ideal polymers, the Asakura-Oosawa
penetrable-sphere model, and to integral equations, scaling and renormalization
group theories. The largest relative changes with density are found in the
dilute regime, so that theories based on non-interacting polymers rapidly break
down. A recently developed ``soft colloid'' approach to polymer-colloid
mixtures is shown to correctly describe the one-body insertion free-energy and
the related surface tension
Energy Dependence of Breakup Cross Sections of Halo Nucleus 8B and Effective Interactions
We study the energy dependence of the cross sections for nucleon removal of
8B projectiles. It is shown that the Glauber model calculations with
nucleon-nucleon t-matrix reproduce well the energy dependence of the breakup
cross sections of 8B. A DWBA model for the breakup cross section is also
proposed and results are compared with those of the Glauber model. We show that
to obtain an agreement between the DWBA calculations, the Glauber formalism,
and the experimental data, it is necessary to modify the energy behavior of the
effective interaction. In particular, the breakup potential has a quite
different energy dependence than the strong absorption potential.Comment: 13 pages, 4 figure
Peripherality of breakup reactions
The sensitivity of elastic breakup to the interior of the projectile wave
function is analyzed. Breakup calculations of loosely bound nuclei (8B and
11Be) are performed with two different descriptions of the projectile. The
descriptions differ strongly in the interior of the wave function, but exhibit
identical asymptotic properties, namely the same asymptotic normalization
coefficient, and phase shifts. Breakup calculations are performed at
intermediate energies (40-70 MeV/nucleon) on lead and carbon targets as well as
at low energy (26 MeV) on a nickel target. No dependence on the projectile
description is observed. This result confirms that breakup reactions are
peripheral in the sense that they probe only the external part of the wave
function. These measurements are thus not directly sensitive to the total
normalization of the wave function, i.e. spectroscopic factor.Comment: Reviewed version accepted for publication in Phys. Rev. C; 1 new
section (Sec. III E), 2 new figures (Figs. 3 and 5
Effective-range approach and scaling laws for electromagnetic strength in neutron-halo nuclei
We study low-lying multipole strength in neutron-halo nuclei. The strength
depends only on a few low-energy constants: the neutron separation energy, the
asymptotic normalization coefficient of the bound state wave function, and the
scattering length that contains the information on the interaction in the
continuum. The shape of the transition probability shows a characteristic
dependence on few scaling parameters and the angular momenta. The total E1
strength is related to the root-mean-square radius of the neutron wave function
in the ground state and shows corresponding scaling properties. We apply our
approach to the E1 strength distribution of 11Be.Comment: 4 pages, 1 figure (modified), additional table, extended discussion
of example, accepted for publication in Phys. Rev. Let
Asymptotic decay of pair correlations in a Yukawa fluid
We analyse the asymptotic decay of the total correlation
function, , for a fluid composed of particles interacting via a (point)
Yukawa pair potential. Such a potential provides a simple model for dusty
plasmas. The asymptotic decay is determined by the poles of the liquid
structure factor in the complex plane. We use the hypernetted-chain closure to
the Ornstein-Zernike equation to determine the line in the phase diagram,
well-removed from the freezing transition line, where crossover occurs in the
ultimate decay of , from monotonic to damped oscillatory. We show: i)
crossover takes place via the same mechanism (coalescence of imaginary poles)
as in the classical one-component plasma and in other models of Coulomb fluids
and ii) leading-order pole contributions provide an accurate description of
at intermediate distances as well as at long range.Comment: 5 pages, 3 figure
- âŠ