25,106 research outputs found

    Decay rate measurement of the first vibrationally excited state of MgH+^+ in a cryogenic Paul trap

    Full text link
    We present a method to measure the decay rate of the first excited vibrational state of simple polar molecular ions being part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the âˆŁÎœ|\nu=1,J1,J=1⟩X1 \rangle_X towards the âˆŁÎœ|\nu=0,J0,J=0⟩X0 \rangle_X level in MgH+^+ by saturated laser excitation of the âˆŁÎœ|\nu=0,J0,J=2⟩X2 \rangle_X-âˆŁÎœ|\nu=1,J1,J=1⟩X1 \rangle_X transition followed by state selective resonance enhanced two-photon dissociation out of the âˆŁÎœ|\nu=0,J0,J=2⟩X2 \rangle_X level. The technique enables the determination of decay rates, and thus absorption strengths, with an accuracy at the few percent level.Comment: 5 pages, 4 figure

    Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass-asymmetry

    Full text link
    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio ÎŒ\mu, including the limiting case ÎŒ=∞\mu=\infty, for different mole fractions xx. Within a large range of xx and ÎŒ\mu the product of the diffusion coefficient of the heavy species D2D_{2} and the total shear viscosity of the mixture ηm\eta_{m} is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function and the van Hove correlation function

    Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks

    Get PDF
    In proto-neutron stars with strong magnetic fields, the neutrino-nucleon scattering/absorption cross sections depend on the direction of neutrino momentum with respect to the magnetic field axis, a manifestation of parity violation in weak interactions. We study the deleptonization and thermal cooling (via neutrino emission) of proto-neutron stars in the presence of such asymmetric neutrino opacities. Significant asymmetry in neutrino emission is obtained due to multiple neutrino-nucleon scatterings. For an ordered magnetic field threading the neutron star interior, the fractional asymmetry in neutrino emission is about 0.006(B/1014G)0.006 (B/10^{14}G), corresponding to a pulsar kick velocity of about 200(B/1014G)200 (B/10^{14}G) km/s for a total radiated neutrino energy of 3×10533\times 10^{53} erg.Comment: AASTeX, 10 pages including 2 ps figures; ApJ Letter in press (March 10, 1998). Shortened to agree with the published versio

    Factor demand linkages, technology shocks, and the business cycle

    Get PDF
    This paper argues that factor demand linkages can be important for the transmission of both sectoral and aggregate shocks. We show this using a panel of highly disaggregated manufacturing sectors together with sectoral structural VARs. When sectoral interactions are explicitly accounted for, a contemporaneous technology shock to all manufacturing sectors implies a positive response in both output and hours at the aggregate level. Otherwise there is a negative correlation, as in much of the existing literature. Furthermore, we find that technology shocks are important drivers of the business cycle

    Intersubband Electron Interaction in 1D-2D Junctions

    Full text link
    We have shown that the electron transport through junctions of one-dimensional and two-dimensional systems, as well as through quantum point contacts, is considerably affected by the interaction of electrons of different subbands. The interaction mechanism is caused by Friedel oscillations, which are produced by electrons of the closed subbands even in smooth junctions. Because of the interaction with these oscillations, electrons of the open subbands experience a backscattering. The electron reflection coefficient, which describes the backscattering, has a sharp peak at the energy equal to the Fermi energy and may be as high as about 0.1. This result allows one to explain a number of available experimental facts.Comment: 5 pages, 3 figure

    The defect variance of random spherical harmonics

    Full text link
    The defect of a function f:M→Rf:M\rightarrow \mathbb{R} is defined as the difference between the measure of the positive and negative regions. In this paper, we begin the analysis of the distribution of defect of random Gaussian spherical harmonics. By an easy argument, the defect is non-trivial only for even degree and the expected value always vanishes. Our principal result is obtaining the asymptotic shape of the defect variance, in the high frequency limit. As other geometric functionals of random eigenfunctions, the defect may be used as a tool to probe the statistical properties of spherical random fields, a topic of great interest for modern Cosmological data analysis.Comment: 19 page

    Quadrupole moments of rotating neutron stars

    Full text link
    Numerical models of rotating neutron stars are constructed for four equations of state using the computer code RNS written by Stergioulas. For five selected values of the star's gravitational mass (in the interval between 1.0 and 1.8 solar masses) and for each equation of state, the star's angular momentum is varied from J=0 to the Keplerian limit J=J_{max}. For each neutron-star configuration we compute Q, the quadrupole moment of the mass distribution. We show that for given values of M and J, |Q| increases with the stiffness of the equation of state. For fixed mass and equation of state, the dependence on J is well reproduced with a simple quadratic fit, Q \simeq - aJ^2/M c^2, where c is the speed of light, and a is a parameter of order unity depending on the mass and the equation of state.Comment: ReVTeX, 7 pages, 5 figures, additional material, and references adde

    Dynamics of dissipative gravitational collapse

    Full text link
    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel--Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.Comment: Some misprints in eqs.(38) and (39) correcte

    Can Parity Violation in Neutrino Transport Lead to Pulsar Kicks?

    Get PDF
    In magnetized proto-neutron stars, neutrino cross sections depend asymmetrically on the neutrino momenta due to parity violation. However, these asymmetric opacities do not induce any asymmetric flux in the bulk interior of the star where neutrinos are nearly in thermal equilibrium. Consequently, parity violation in neutrino absorption and scattering can only give rise to asymmetric neutrino flux above the neutrino-matter decoupling layer. The kick velocity is substantially reduced from previous estimates, requiring a dipole field B∌1016B \sim 10^{16}~G to get vkickv_{kick} of order a few hundred km~s−1^{-1}.Comment: REVTEX, 4 pages, no figures. Submitted to Phys. Rev. Letter

    Fluid and solid phases of the Gaussian core model

    Full text link
    We study the structural and thermodynamic properties of a model of point particles interacting by means of a Gaussian pair potential first introduced by Stillinger [Stillinger F H 1976 J. Chem. Phys. 65, 3968]. By employing integral equation theories for the fluid state and comparing with Monte Carlo simulation results, we establish the limits of applicability of various common closures and examine the dependence of the correlation functions of the liquid on the density and temperature. We employ a simple, mean-field theory for the high density domain of the liquid and demonstrate that at infinite density the mean-field theory is exact and that the system reduces to an `infinite density ideal gas', where all correlations vanish and where the hypernetted chain (HNC) closure becomes exact. By employing an Einstein model for the solid phases, we subsequently calculate quantitatively the phase diagram of the model and find that the system possesses two solid phases, face centered cubic and body centered cubic, and also displays reentrant melting into a liquid at high densities. Moreover, the system remains fluid at all densities when the temperature exceeds 1% of the strength of the interactions.Comment: 22 pages, 10 figure
    • 

    corecore