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Abstract—This paper argues that factor demand linkages can be impor-
tant for the transmission of both sectoral and aggregate shocks. We show
this using a panel of highly disaggregated manufacturing sectors together
with sectoral structural VARs. When sectoral interactions are explicitly
accounted for, a contemporaneous technology shock to all manufacturing
sectors implies a positive response in both output and hours at the aggregate
level. Otherwise there is a negative correlation, as in much of the existing lit-
erature. Furthermore, we find that technology shocks are important drivers
of the business cycle.

I. Introduction

INPUT-OUTPUT linkages are a pervasive feature of mod-
ern economies. Intermediate goods used in one sector are

produced in other sectors, which in turn use the output from
the first sector as an input to their own production. Therefore,
there are complex circular networks of input-output inter-
actions that need to be taken into account. Neglecting them
could lead to a significant loss in understanding the dynamics
of the supply side of an economy.

The presence of an intermediate input channel is empha-
sized by Hornstein and Praschnik (1997) and analyzed in
detail in Kim and Kim (2006). In this paper, we explicitly
consider the empirical relevance of this channel. We study
fluctuations at the sectoral and the aggregate levels and show
that it is important to model the interactions between sectors
if we want to fully understand the propagation of shocks
across the economy. Typically, reduced-form time series
methods, in conjunction with long-run identifying assump-
tions, are used to disentangle disturbances to an economy.
With few exceptions, the literature has applied these meth-
ods to aggregate time series. However, modeling aggregate
time series directly implies that sectors are relatively homo-
geneous and, most important, that interactions among sectors
are of second-order importance for aggregate fluctuations.1

Following the pioneering work of Long and Plosser (1983),
real business cycle (RBC) models have been generalized into
a multisectoral environment where industry-specific shocks
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1 See Dupor (1999) for a discussion of the theoretical conditions under
which the latter hypothesis is verified and Horvath (1998) and Carvalho
(2009) for a critique.

are propagated through sectoral interdependencies arising
from the input-output structure of the economy, which can
generate business cycle fluctuations. The idea was revital-
ized by Horvath (1998, 2000) and more recently by Carvalho
(2009). Also, Conley and Dupor (2003) and Shea (2002)
emphasize sectoral complementarities as the main mecha-
nism for propagating sectoral shocks at the aggregate level,
the main idea being intrinsically related to the original result
of Jovanovic (1987).

We use a simplified version of a multisectoral real business
cycle model with factor demand linkages to derive restrictions
that allow us to understand how shocks in one sector can affect
productivity in other sectors. We then make use of those long-
run restrictions to disentangle technology and nontechnology
shocks in a structural VAR for a panel of highly disaggregated
manufacturing sectors. The main novelty is that all sectors in
the economy are related by factor demand linkages captured
by the input-output matrix. A sectoral VAR where all indus-
tries are linked through the input-output matrix (SecVAR)
is then constructed using the approach of Pesaran, Schuer-
mann, and Weiner (2004). This allows us to distinguish
between the contribution made by technology shocks to par-
ticular sectors and the overall effect amplified by sectoral
interactions. As a result, the shocks that we identify can
explain industry and aggregate fluctuations only if all sec-
tors are analyzed contemporaneously (i.e., not in isolation).
In this setting, the intermediate input channel becomes crucial
for propagating shocks to the aggregate economy.

Furthermore, we consider the implications of our results
for the relative roles played by technology and nontechnology
shocks in explaining aggregate fluctuations in manufacturing.
Real business cycle theory attributes the bulk of macro-
economic fluctuations to optimal responses to technology
shocks. This in turn implies a positive correlation between
hours worked and labor productivity. The source of this cor-
relation is a shift in the labor demand curve as a result of a
technology shock, combined with an upward-sloping labor
supply curve. There is, however, a substantial literature sug-
gesting that this is inconsistent with the data. Galí (1999)
uses the identifying assumption that innovations to technol-
ogy are the only type of shock that have permanent effects
on labor productivity and finds that hours worked decline
after a positive technology shock. Furthermore, he finds that
technology shocks account for only a minimal part of aggre-
gate fluctuations. A number of studies have reported similar
results (see Galí & Rabanal, 2004, for a review), which, if con-
firmed, would make a model of technology-driven business
cycles unattractive. This has led many to conclude that the
technology-driven real business cycle hypothesis is “dead”
(Francis & Ramey, 2005). Galí (1999) suggests that the
paradigm needs to be changed in favor of a business cycle
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model driven by nontechnology shocks and featuring sticky
prices.

Most of the empirical macroeconomic literature evaluat-
ing the effect of technology shocks focuses on the analysis
of aggregate data, where sectoral interactions through factor
demand linkages do not matter. Chang and Hong (2006) and
Kiley (1998) examine the technology-hours question with
sector-level data, but they consider each sector as a sepa-
rate unit in the economy. Instead, in this paper, we explicitly
consider the implications of factor demand linkages for the
econometric analysis of the effect of technology shocks on
hours. We show that a contemporaneous technology shock
to all sectors in manufacturing implies a positive aggre-
gate response in both output and hours, and this is directly
related to the role of factor demand linkages in the trans-
mission of shocks. When sectoral interactions are ignored,
we find a negative correlation as with much of the rest of
the literature. The input-output channel can be both quali-
tatively and quantitatively important for the transmission of
shocks. Indeed, sectoral interactions prove to be an impor-
tant amplifier of sector-specific and aggregate shocks. The
incorporation of factor demand linkages appears to revive
the importance of technology shocks as drivers of the aggre-
gate business cycle. In fact, technology shocks appear to
account for a large share of sectoral fluctuations; most sig-
nificant, shocks to other sectors (transmitted though sectoral
interactions) are fundamental for tracking individual sectoral
cycles. Our analysis suggests that once sectoral interactions
are accounted for, technology and nontechnology shocks
seem to be equally important in explaining aggregate eco-
nomic fluctuations in U.S. manufacturing. Interestingly, our
results tend to show that the role of technology shocks has
gained in importance since the mid-1980s.

The remainder of the paper is organized as follows. In
section II, we employ a basic multisectoral RBC model
to derive long-run restrictions, which we then use in the
empirical analysis. In section III, we show how to identify
technology and nontechnology shocks in a way consistent
with the restrictions of the multisectoral model, employing a
structural VAR but applied to industrial sectors. We describe
the data in section IV. In section V, we report our findings.
In section VI, we consider some robustness checks. Section
VII contains concluding remarks.

II. A Simple Multisectoral Growth Model

The purpose of the simplified model of this section is to
derive the structural restrictions that will allow us to identify
the different shocks that affect the economy at the sectoral
level. Furthermore, this simplified model will allow us to shed
light on the way shocks are propagated through the economy
in a model that explicitly takes into account factor demand
linkages among sectors. The focus is on the long-run proper-
ties of the model that are useful for structural identification.
In order to simplify the discussion, we focus on an economy
buffeted only by sector-specific shocks.

The model economy consists of N sectors, indexed
by i. Households allocate labor to all sectors and make
consumption-saving decisions. The representative household
maximizes discounted expected utility,

E0

∞∑
t=0

βt{log Ct + χV(Lt)},

subject to the usual intertemporal budget constraint. Here, E0

is the expectation operator conditional on time t = 0, β is the
discount factor, and V(Lt) is a twice-differentiable concave
function that captures the disutility of supplying labor. The
log utility specification is consistent with aggregate balanced
growth and structural change at the sectoral level, as discussed
in Ngai and Pissarides (2007). With perfect labor mobility
across sectors, the leisure index is Lt = 1−Ht = 1−∑

i Hit .
The aggregate consumption index is Ct = ∏

i ξ
−ξi
i C̃ξi

it , where
ξi ∈ [0, 1] are aggregation weights that satisfy

∑
i ξi = 1.

In order to allow for possible shocks to preferences as well
as to technologies, the consumption bundle is subject to a
preference shock of the form

C̃it = Cit

ZP
it

.

The shocks to preferences are exogenous and are assumed
to follow an autoregressive process of the form ZP

it =
(ZP

it−1)
� exp[Φp

i (L)ε
p
it] where |�| ≤ 1, Φp

i (L) = (1−φiL)−1 is
a square summable polynomial in the lag operator (|φi| < 1)

and ε
p
it is white noise.2

On the supply side, the goods market operates under perfect
competition, and besides labor, production of each good also
uses inputs from other sectors. The production function is a
Cobb-Douglas with constant return to scale,

Yit = ZitM
αi
it H1−αi

it ,

where intermediate inputs, Mit , are aggregated as

Mit =
∏

j∈Si
γ

−γij
ij M

γij
ijt .

Mijt is the intermediate input j used in the production of
good i, Si is the set of supplier sectors of sector i, γij the
share of the intermediate input j in sector i, and

∑
j γij = 1.

The technology shock of each sector is also assumed to fol-
low an autoregressive stochastic process of the form Zit =
(Zit−1) exp[μz

i + Φz
i (L)εz

it], where μz
i is a constant drift and

Φz
i (L) = (1−ρiL)−1 is a square summable polynomial in the

lag operator (i.e., |ρi| < 1) and εz
it is a white noise innovation

to the idiosyncratic technology shock to sector i. Further-
more, we assume that the shocks are idiosyncratic at the
sectoral level, that is, Cov(εz

it , ε
z
jt) = 0, ∀i �= j. Given the

2 It is convenient to assume that the shocks are normalized such that∏
i(Z

P
it )

ξi = 1, that is, idiosyncratic shocks do not directly affect aggregates
(see also Franco & Philippon, 2007).
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aggregator for intermediate inputs, the price index for inter-
mediate goods can be written as PMi

t = ∏
j∈Si

P
γij
jt , where Pit

is the price of the good produced in sector i.
In perfect competition, equilibrium requires that the price

equals the marginal cost of production. Therefore, the cost
minimization problem for each sector i in conjunction
with the Cobb-Douglas production function implies con-
stant expenditure shares for all inputs. Free mobility of
intermediate inputs across sectors implies that the marginal
productivity of inputs (i.e., the prices of intermediate inputs)
needs to be equal across sectors, and perfect labor mobility
across sectors requires that (at the margin) nominal wages
need to be equalized: Wit = Wjt = Wt∀i, j. The latter implies
that the relative price of two goods is inversely related to
relative (labor) productivity,

Pit

Pjt
= κij

(
Yjt/Hjt

Yit/Hit

)
, (1)

where κij reflects differences in the labor intensity of the pro-
duction functions.3 From the definition of the price index for
intermediate goods, the relative price of intermediate goods is

PMi
t

Pit
=

∏
j∈Si

P
γij
jt

Pit
=

[∏
j∈Si

(κijYjt/Hjt)
γij

Yit/Hit

]−1

. (2)

The relative prices act as an important conduit for the trans-
mission of technology shocks. A positive technology shock
to the jth sector lowers the price in the same sector. Since
part of the production of the jth sector is supplied to the ith
sector as an intermediate input, positive shocks occurring in
one sector also have a negative impact on the prices of other
sectors.

Labor productivity in sector i can be calculated from the
production function as

Yit

Hit
= φiZit

[∏
j∈Si

(Yjt/Hjt)
γij

]αi
, (3)

where φi is a convolution of the production parameters.
Expression (3) makes it clear that in a multisectoral model,
the long-run level of labor productivity is driven only by tech-
nology shocks, originating in either the same sector or other
sectors through the intermediate inputs channel. Defining xit

as the logarithm of labor productivity and zit as the logarithm
of the technology shock and stacking sectoral variables in
vectors, xt and zt respectively, the equilibrium solution for
labor productivity can be written as

(I − AG)xt = zt + φ (4)

where I is the identity matrix, A = diag(α1, . . . , αN), φ =
[log φ1, . . . , log φN ]′, and Γ is the “use” input-output matrix

3 Notice that if sectoral production functions are identical in each sec-
tor, the previous expression would be Pit/Pjt = Zjt/Zit (see also Ngai &
Samaniego, 2008).

whose generic elements are the parameters γιj introduced
above. The long-run response of labor productivity in sector
i to the innovation to technology is then

lim
h→∞

∂ log
(

Yit+h
Hit+h

)
∂εz

it

= ι′
i[(I − AΓ)(I − D)]−1ιi �= 0, (5)

lim
h→∞

∂ log
(

Yit+h
Hit+h

)
∂εz

jt

= ι′
i[(I − AΓ)(I − D)]−1ιj �= 0 ∀j �= i, (6)

where D = diag(ρ1, . . . , ρN) and ιk is the kth column of the
N-dimensional identity matrix. Note that when factor demand
linkages are not taken into consideration, αi = 0 ∀i and

lim
h→∞

∂ log
(

Yit+h
Hit+h

)
∂εz

it

= ι′
i(I − D)−1ιi

= 1

1 − ρi
< ι′

i[(I − AΓ)(I − D)]−1ιi,

lim
h→∞

∂ log
(

Yit+h
Hit+h

)
∂εz

jt

= 0 ∀j �= i.

Furthermore, permanent preference shocks have no effect on
labor productivity because in this case, idiosyncratic shocks
do not affect aggregate price or quantities. Therefore, the
long-run restrictions that permit the identification of the
shocks are

lim
h→∞

∂ log
(

Yit+h
Hit+h

)
∂ε

p
it

= 0, (7)

lim
h→∞

∂ log
(

Yit+h
Hit+h

)
∂ε

p
jt

= 0 ∀j �= i. (8)

The labor market clearing condition for sector i equates
labor supply, determined by the households’ marginal rate
of substitution between consumption and leisure, to the
marginal productivity of labor, which drives sectoral labor
demands. Therefore, labor input in each sector can be written
as

Hit = (1 − αi)ξiZP
it

χ

Yit

Cit

∂V(Lt)

∂Lt
(9)

and clearly depends on the sectoral preferences as well as
on sectoral technology shocks. Moreover, the presence of
factor demand linkages is such that hours in each sector are
influenced by shocks originating in other sectors:

lim
h→∞

∂ log(Hit+h)

∂ε
p
jt

�= 0 ∀i, j,

lim
h→∞

∂ log(Hit+h)

∂εz
jt

�= 0 ∀i, j.
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The empirical analysis in the next section will make use of
the fact that in this simplified economy, the long-run response
of labor productivity is directly influenced by technological
developments specific to a given sector, as well as by changes
in productivity in sectors that supply inputs (see equation [3]).
This allows us to identify technology shocks and their flows
across sectors. However, it is worth emphasizing that in more
general specifications of a multisectoral model, the same type
of relations might not hold. Indeed, labor productivity in a
given sector will still be influenced by technology shocks
originating in the other sectors, yet the relationship may not
be so neatly dependent on the input-output structure of the
economy (see Horvath, 2000; Kim and Kim, 2006; Foerster,
Sarte, & Watson, 2008).

III. The Econometric Specification

Reduced-form time series methods, in conjunction with
the long-run identifying assumptions, are used to disentangle
two fundamental (orthogonal) disturbances: technology and
nontechnology shocks.

Following Galí (1999), many studies adopt the identify-
ing assumption that the only type of shock that affects the
long-run level of labor productivity is a permanent shock to
technology. This assumption is satisfied by a large class of
standard business cycle models.4 However, the discussion in
the previous section points to the need to go further than this
when there are factor demand linkages. Labor productivity in
the ith sector in the long run is also affected by labor produc-
tivity in the sectors that supply intermediate goods to the ith
sector, through changes in relative prices as in equation (3).
Therefore, to identify technology and nontechnology shocks,
we need to take into account the intermediate input channel
as well.

Estimating a VAR for all industries in an economy is
infeasible for any reasonably large number of industries.
A consistent way of identifying the technology shocks is
to estimate a model for each sector and then apply the
restrictions implied by the multisectoral model with factor
demand linkages. Specifically for each industry, we estimate
the model5

4 See, for example, King, Plosser, and Rebelo (1988), King et al. (1991),
and Christiano and Eichenbaum (1992). Notice that increasing returns, cap-
ital taxes, and some models of endogenous growth would all imply that
nontechnology shocks can change long-run labor productivity, thus inval-
idating the identifying assumption. Francis and Ramey (2005) investigate
the distortion that may come from the exclusion of the permanent effect of
capital taxes, but find that this does not affect the outcome of the simpler
bivariate specification on aggregate data.

5 For ease of exposition, we focus on the simple VARX(1,1) without
any deterministic component, but the discussion equally applies to a more
general formulation. In principle, an appropriate number of lags of the
endogenous and weakly exogenous variables are included such that the
error terms (i.e., the identified shocks) are serially uncorrelated. Given
the short annual time series, we choose a single lag specification in the
empirical section. For most sectors, this choice is supported by the Akaike
and Schwarz information criteria.

(Ai0 − Ai1L)κit = (Ci0 + Ci1L)κ∗
it + λidt + εit , (10)

where κit = [Δxit , Δhit]′ and Δxit and Δhit denote, respec-
tively, the growth rate of labor productivity and labor input6

and κ
∗
it are appropriate industry-specific weighted cross-

sectional averages of the original variables in the system that
reflect interactions between sectors. Specifically, the industry
cross-sectional averages are constructed in order to capture
factor-demand linkages between manufacturing sectors in the
economy, κ

∗
it = [ ∑N

j=1 ωijΔxjt ,
∑N

j=1 ωijΔhjt
]′

, where the
weights, ωij, correspond to the (possibly time-varying) share
of commodities j used as an intermediate input in sector i (i.e.,
ωij ≈ γij). The specification includes a set of k exogenous
aggregate variables, dt , which are meant to control for the
effect of aggregate (nominal and real) shocks hitting the econ-
omy.7 The sectoral idiosyncratic shocks εt = [ε′

1t , . . . , ε′
Nt]′

are such that for each industry εit = [εz
it , ε

p
it]′, where εz

it
denotes the technology shock and ε

p
it denotes the nontechnol-

ogy shock for the ith sector. The key identifying assumption is
that E(ε′

itεit) = Ωiε ∀i is a diagonal matrix and E(ε′
itεis) = 0

∀t �= s.
To estimate the effect of technology shocks, we follow

the procedure outlined in Shapiro and Watson (1988) and
discussed in Christiano, Eichenbaum, and Vigfusson (2003).
The restriction that the technology shock is the only source
of variation in labor productivity in the long run allows us to
identify sector-specific shocks. For the ith sector, this restric-
tion has to be imposed on shocks originating in the ith sector
and on shocks originating in other sectors that supply inputs
to the ith sector. The equilibrium relation for labor produc-
tivity in equation (4) states that labor productivity in the long
run in the ith sector is affected only by direct technology
shocks to the sector and by the technology shocks (of other
sectors) that have an impact on labor productivity of supply-
ing sectors (6). Therefore, equation (4) imposes two sets of
restrictions. The first one is the standard restriction given by
equation (7), which requires that A12

i0 = −A12
i1 . The second

restriction, which is nonstandard, is derived from equation
(8) and requires that C12

i0 = −C12
i1 .

It is possible to recover the SecVAR specification by stack-
ing the sector-specific models in equation (10). The model
can be rewritten as

G0κt + G1κt−1 = ut , (11)

6 There is an issue in literature concerning whether labor input (hours)
should be modeled as stationary in level or in first difference when extract-
ing the technology shock (Christiano et al., 2003). The fact that aggregate
labor input is stationary is often motivated by balanced growth path consid-
erations. However, at the industry level, the reallocation of the labor input
could produce different sectoral trends (Campbell & Kuttner, 1996; Phelan
& Trejos, 2000). Evidence that labor productivity and labor input follow
unit root processes is provided in Holly and Petrella (2010).

7 Foerster et al. (2008) emphasize that a factor error structure at the industry
level can arise from both the presence of aggregate shocks and input-output
linkages.
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where κt = [κ′
1t , . . . , κ′

Nt]′ and the matrices of coefficients
are

Gi0 = (Ai0, −Ci0)Wi,

Gi1 = −(Ai1, Ci1)Wi,

where the 4 × 2N weighting matrix, Wi, is constructed such
that for each sector, this selects the sector-specific variables
and constructs the sector-specific cross-sectional averages
in equation (10), as outlined in Pesaran et al. (2004). The
reduced-form moving-average representation of the dynam-
ics of labor productivity and hours at the sectoral level
can be recovered by inverting G(L) in equation (11), more
specifically,

κt = B(L)ut . (12)

The transmission mechanism is captured by B(L), a matrix
polynomial in the lag operator, L, and the innovations are
such that E(u′

tut) = Ωu and E(u′
tus) = 0 ∀t �= s.8 The

specification in equation (12) does not impose any partic-
ular restriction on the nature of the shocks; shocks at the
industry level can be either idiosyncratic or a combina-
tion of an aggregate and an industry-specific component
(uit = λidt + εit).

Chang and Hong (2006) and Kiley (1998) make use of
the restriction that labor productivity is driven solely by
technology shocks in the long run in a bivariate VAR to
recover (industry-specific) technology shocks. Therefore,
they neglect the role of factor-demand linkages between
sectors. Their specification can be cast in the general specifi-
cation, equation (12), with each sector analyzed in isolation
(i.e., the matrix polynomial B(L) is composed of block diago-
nal matrices). The specification in equation (10) encompasses
the specification of Kiley (1998) and Chang and Hong (2006)
by setting the coefficients reflecting factor-demand linkages
to 0 (Cil = 0, ∀i, l). However, the model in the previous
section makes it clear that this would be appropriate only if
intermediate inputs had a negligible role to play in production.
This is a rather strong restriction, as it implies that in order to
replicate the widely documented comovement between sec-
tors, we would have to rely on only aggregate shocks. The
specification in equation (10) instead allows us to recover
a mechanism by which idiosyncratic and aggregate shocks
are propagated by sectoral interactions due to factor-demand
linkages, as illustrated by the simplified model in the previous
section.

The model analyzed in this section provides a further
application of the method described in Pesaran et al. (2004)
but at the industry level. The difference is that we consider
a fully structural model: the contemporaneous relation-
ships are constrained not only between the endogenous and

8 Appendix B in Holly and Petrella (2010) provides more details on the
construction of equation (11) and how to recover the MA moving aver-
age representation, as well as some detailed discussion of the transmission
mechanism of idiosyncratic shocks.

the weakly exogenous aggregate variables but also include
the contemporaneous relationships between the endogenous
variables.

IV. Data and Estimation Results

A. Data Description

The data used are collected from the NBER-CES Manu-
facturing Industry Database (Bartelsman & Wayne, 1996).
The database covers all four-digit manufacturing industries
from 1958 to 1996 (39 annual observations) ordered by 1987
SIC codes (458 industries).9 Labor input is measured as total
hours worked, while productivity is measured as real output
divided by hours.10 Each variable is included as a log dif-
ference, where this choice is supported by panel unit root
tests.

We match the data set with the standard input-output matrix
at the highest disaggregation, provided by the Bureau of Eco-
nomic Activity (BEA).11 Specifically, we employ the “use”
table, whose generic entry ij corresponds to the dollar value,
in producers’ prices, of commodity produced by industry j
and used by industry i. This table is transformed into a weight-
ing matrix by row standardization, such that each row sums
to 1.

The input-output “use” table clearly reflects factor-demand
linkages and is thus a good measure of the intermediate
input channel. Shea (2002) and Conley and Dupor (2003)
use the same matrix to investigate factor-demand linkages
and sectoral complementarities. Ideally we would need a
time-varying input-output matrix in order to take into con-
sideration the change in the factor linkages between sectors
in the economy or the steady-state input-output matrix as in
equation (4). In the empirical analysis, however, we use the
average of the input-output matrix in 1977 and 1987.12 In
the robustness section, we investigate whether the results are
affected by changes in the IO structure.

9 As in other studies we exclude the Asbestos Product industry (SIC 3292)
because the time series ends in 1993.

10 Chang and Hong (2006) have argued that total factor productivity (TFP)
and not labor productivity is the correct measure from which to identify
technology shocks. In appendix A of Holly and Petrella (2010), we address
this question. Furthermore, in section VI, we show that our results are robust
to whether we use TFP or labor productivity.

11 The data are available at http://www.bea.gov/industry/io_benchmark
.htm. The original input-output matrix when constrained to the manu-
facturing sector has only 355 entries. This means that the BEA original
classification for the construction of the input-output matrix aggregates
more (four-digit SIC) sectors. As the entries in the original data correspond
to the dollar value, in producers’ prices, of each commodity used by each
industry and by each final user, when more than one SIC sector corresponds
to a single sector in the IO matrix, we split the initial value equally among
the SIC sectors. The original IO matrix also includes within-sectors trade,
we exclude this from the calculation of the standardized weighting matrix.

12 For the IO matrix in 1987, there exists an exact match between the
classification of the NBER-CES database and the IO matrix from the BEA.
For the IO matrix in 1977, we match the 1977 SIC codes to the closest 1987
SIC codes. Detailed tables are available from the authors on request.
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Table 1.—Preliminary Analysis of Comovement

Labor Productivity Hours

ρ̂ 0.055 0.202
CD 109.28 403.44
Onatski

(H0: r = 0) 33.089∗ 6.621∗
(H0: r = 1) 33.089∗ 6.621∗
(H0: r = 2) 1.243 3.904

No Sectoral Interactions Technology Nontechnology
ρ̂ 0.046 0.183
CD 91.12 356.86
Onatski

(H0: r = 0) 6.838∗ 5.661
(H0: r = 1) 6.838∗ —
(H0: r = 2) 1.405 —

Identified Idiosyncratic Shocks Technology Nontechnology
ρ̂ 0.009 0.010
CD 19.04 20.94
Onatski

(H0: r = 0) 2.683 2.274

The first part of the table reports measures of the strength of the cross-sectional dependence
between sectors, ρ̂ is the simple average of the pair-wise cross-section correlation coefficients, ρ̂ =
[2/N(N − 1)] ∑N−1

i=1

∑N
j=i+1 ρ̂ij with ρ̂ij being the correlation coefficient for the ith and jth cross-

section units. The test of the null hypothesis of no cross-sectional dependence (Pesaran, 2004) is
CD = √

2T/N(N − 1)
∑N−1

i=1

∑N
j=i+1 ρ̂ij , which tends to N(0, 1) under the null. The second part of

each panel reports the Onatski (2007) test of the number of static factors. The critical values depend
on κ = kmax − k, and these are tabulated in Onatski (2007). In the table, we report the test for kmax = 5.
The 5% values are 5.77 for κ = 5, 5.40 for κ = 4, and 4.91 for κ = 3. ∗Significant at the 5% level.

B. Preliminary Investigation of Comovement across Sectors

In this section we turn to a preliminary analysis of comove-
ment across sectors in manufacturing. The first panel of
table 1 provides evidence of cross-sectional dependence in
(the growth rate of) productivity and hours (i.e., the raw
data). The first row shows the average cross-section cor-
relation between sectors, and the second row reports the
associated cross-section dependence (CD) test of Pesaran
(2004). The results in table 1 highlight substantial positive
comovement, especially for total hours worked. The CD test
statistics clearly show that the cross-correlations are highly
significant.

The second panel takes the residuals recovered from the
SecVAR described by equation (10) but without allowing
for the input-output channel (so for each i, Ci0 = Ci1 =
0). Again the residuals, corresponding to technology and
nontechnology shocks, exhibit considerable cross-section
dependence, especially for the nontechnology shocks.

In the absence of any sectoral interaction, the comovement
is entirely attributed to the presence of aggregate factors. The
information criteria of Bai and Ng (2002) suggest a specifica-
tion with one or two aggregate factors for total hours and one
for nontechnology shocks, whereas it identifies no aggregate
factors for the labor productivity series and the technology
shocks.13 The bottom half of each panel in table 1 reports
the results of the test of Onatski (2007), which starts from
an a priori maximum number of factors, kmax, where the null

13 These results are consistent with Bai and Ng (2002) ICP1 and BIC3
criteria with a maximum number of factors set to 5. The BIC3 criteria are
reported given that they perform well in the presence of pervasive weak
cross-sectional dependence (see Bai & Ng, 2002; Onatski, 2005).

hypothesis of the test is H0 : r = k while the alternative is
k < r = k + s ≤ kmax. This test, applied to both the raw
data (panel 1) and the shocks identified without allowing any
sectoral interaction (panel 2), points to the presence of two
common factors driving both productivity and hours, as well
as two common factors driving the technology shocks. How-
ever, despite the high level of cross-sectional correlation, no
common factors are detected for nontechnology shocks.14

We now turn to the residuals recovered from the full
SecVAR in equation (10), where we allow for sectoral inter-
actions. Given the results in table 1, suggesting the presence
of possible common factors (aggregate shocks), two proxies
for the aggregate shocks have been added as conditioning
variables when we estimate each sectoral model, equation
(10). Specifically, we include the aggregate technology shock
constructed by Basu, Fernald, and Kimball (2006) and a mon-
etary policy shock derived from an exactly identified VAR,
estimated on quarterly data averaged for each year, follow-
ing the procedure adopted by Christiano, Eichenbaum, and
Evans (1999).15 The bottom panel of table 1 shows that the
shocks identified by the sectoral model, equation (10), are
(almost) independent, once factor-demand linkages among
sectors and the aggregate shocks are taken into account. The
average pairwise cross-sectional correlation is about 1%, and
the information criteria of Bai and Ng (2002), as well as the
test of Onatski (2007), suggest the absence of any aggregate
factor.

It is worth noting that although the average pairwise cross-
sectional correlation is greatly reduced when we allow for
sectoral interactions, cross-sectional dependence is still sig-
nificant according to the CD test. This implies that shocks to
one sector are likely to be correlated with shocks to other sec-
tors, that is, the covariance matrix of the idiosyncratic shocks
in equation (12), Ωε, is not fully diagonal. Although we can
exclude the presence of unidentified aggregate shocks since
no factors could be identified, there are still local interactions
among sectors that equation (10) is not able to capture.16

In order to quantify how widespread the rejection of
orthogonality is, we computed the number of significant
correlations between sectors. The number of rejections varies

14 The information criteria of Bai and Ng (2002) and the test introduced by
Onatski (2007) determine the number of common static factors. As Stock
and Watson (2002b) observed, the number of static factors imposes an upper
bound on the possible number of dynamic common factors. Foerster et al.
(2008) also find evidence consistent with 1 or 2 static common factors in
their analysis of sectoral industrial production.

15 The data are provided by Basu et al. (2006) and are available at the AER
Web site (http://aea-web.org/aer/). Notice that the two shocks are orthogonal
by construction. We enter the monetary shocks in the reduced-form model
for labor productivity in first difference, so that there is no long-run effect
of a monetary shock on productivity. In a previous version of this paper,
we included the monetary policy shock in levels, with the result that the
coefficients associated with these shocks were, on average, not significant
and the qualitative overall results were not affected.

16 For instance, Shea (2002) studies other forms of sectoral interaction that
might be important for aggregate cyclical fluctuations. Conley and Dupor
(2003) use a nonparametric technique to model the off-diagonal elements
of the covariance matrix Ωε. Here the issue is complicated as we identify
not one but two types of shock.
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from a minimum of 11 to a maximum of 67 (median 36) for
technology shocks and 17 and 73 (median 39) for nontechnol-
ogy shocks, out of a total of 458 sectors. To establish whether
there is any connection between the residual cross-sectional
dependence and the characteristics of the sector, we looked at
the relation of the latter with the number of significant corre-
lations for each sector. Specifically, we considered (a) the size
of the sector, (b) the importance of the sector as an input sup-
plier (measured by the column sum of the weighting matrix
used in estimation and the number of connections of each sec-
tor; see also Pesaran & Tosetti, 2007, and Carvalho, 2009),
and (c) the importance of a sector as an input user (measured
by the number of supplying sectors and the size of the input
material bill). Overall, for considerations a and c, there seems
to be no relation (the correlations are rather small and are all
insignificant). For consideration b, even though there is no
relation for technology shocks, there seems to be a signifi-
cant correlation for nontechnology shocks, as the number of
rejections is marginally (positively) related to the importance
of the sector as an input supplier.

To understand how much information we lose by assum-
ing that the shocks we have identified are cross-sectionally
independent, the aggregate output and hours (growth) series
were simulated assuming that Ωε is diagonal. The correla-
tion between the aggregated series for manufacturing and the
sum of sectors is approximately 99% for both series. This
can be taken as evidence to support the hypothesis that the
remaining cross-sectional dependence is weak and of little
importance for explaining aggregate fluctuations in manu-
facturing. Therefore, in the rest of the paper, we proceed as
if Ωε is diagonal.

C. The Exogeneity of Cross-Sectional Averages

An important issue for the consistent estimation of equa-
tion (10) is whether the weighted cross-sectional averages are
weakly exogenous. Here we consider the soundness of this
assumption.

Imposing the long-run restrictions (which require that, in
equation 10, A12

i0 = −A12
i1 and C12

i0 = −C12
i1 ), the two set of

equations that need to be estimated for each sector are

Δxit = A12
i0 Δ2hit + (

C11
i0 + C11

i1 L
)
Δx∗

it + C12
i0 Δ2h∗

it

+ A11
i1 Δxit−1 + λxidt + εz

it , (13)

and

Δhit = (
A21

i0 + A21
i1 L

)
Δxit + (

C21
i0 + C21

i1 L
)
Δx∗

it

+ A22
i1 Δhit−1 + (

C22
i0 + C22

i1 L
)
Δh∗

it + λhidt + ε
p
it .

(14)

Estimation of equations (13) and (14) requires three instru-
ments in each equation. The long-run restrictions on the effect
of nontechnology shocks allow the use of the lagged (growth)
of hours and the associated cross-sectional average, Δhit−1

and Δh∗
it−1, among the instruments in the equation for labor

productivity. Furthermore, the identified technology shock
from equation (13) can be used to identify the contemporane-
ous relation between labor productivity and hours in equation
(14). Therefore, full identification requires the choice of one
additional instrument for the equation for labor productivity
and two for the equation for hours. If the cross-sectional aver-
ages are weakly exogenous, then they can be used directly
in estimation; otherwise past values of the aggregate exoge-
nous shocks, dt−1, can be used as additional instruments.17

Therefore, the weak exogeneity of the cross-sectional aver-
ages can be tested by looking at the difference between
the J-statistics of the instrument sets with and without the
inclusion of the contemporaneous cross-sectional averages
among the instruments (Eichenbaum, Hansen, & Singleton,
1988). The p-value of the C-test averaged across sectors is
0.763 and 0.737 for the productivity and hours equations,
respectively, whereas the null is rejected at the 5% level in
only two industries for productivity and in only seven indus-
tries for hours (out of 458).18 These results seem to support
the assumption that the cross-sectional averages are weakly
exogenous and that therefore the contemporaneous relations
between the sector-specific variables and the cross-sectional
averages in equation (10) can be estimated consistently. As
such, there is only one variable for each equation that needs to
be instrumented (i.e., the contemporaneous relation between
sector-specific labor productivity and hours in each of the
equations). Furthermore, the long-run restriction on the cross-
sectional average in the first equation automatically provides
an additional instrument that can be used to identify the
technology shock from the first part of equation (10), thus
partially addressing some of the concerns of Christiano et al.
(2003) about possible biases arising from the use of weak
instruments.19

V. Technology Shocks and the Business Cycle

Real business cycle theory assigns a central role to tech-
nology shocks as a source of aggregate fluctuations. More-
over, positive technology shocks should lead to positive
comovement of output, hours and productivity. However,
Galí (1999) finds that positive technology shocks appear
to lead to a decline in hours, suggesting that they can
explain only a limited part of business cycle fluctuations.
This section reexamines these issues and contributes to the
technology-hours debate by focusing on the implications of
the presence of factor demand linkages for the propagation of
sector-specific technology shocks to the aggregate economy.

17 Shea (1997) partial R2 suggest that those are relevant instruments.
18 None of the sectors where we reject the null is a large input supplier.
19 In appendix C of Holly and Petrella (2010), we show that Δh∗

it−1 can be
used as an additional instrument in the productivity equation and that, under
fairly general conditions, should improve the identification in equation (13).
Indeed, the inclusion of this instrument increases the average value of the
partial R2 of Shea (1997) by approximately 20% (and the average adjusted
partial R2 by 30%). Since including redundant moment conditions might
result in poor finite sample performance, the results reported below do not
include the lagged aggregate shocks, dt−1, among the instruments used.
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Figure 1.—Impulse Responses to Technology Shocks without Sectoral Interactions

The figure shows impulse responses of labor productivity and hours to a contemporaneous technology shock to all sectors, where no interaction between sectors is allowed. The left panels provide the aggregate
response, and the shaded area represents the 90% confidence intervals (Hall’s “percentile interval”; see Hall, 1992) based on bootstrapping 500 draws. The right panels show the sectoral responses weighted by sectoral
average real shipment value, such that the sum of these corresponds to the panels on the left.

A. The Dynamic Response to Technology Shocks

In figure 1 we show the response of labor productivity
and hours to a 1 standard deviation technology shock to all
industries, disregarding sectoral interactions.20 The panel on
the left displays the aggregate response of manufacturing to
a contemporaneous shock to all sectors, and the panel on the
right displays the aggregate response to each of the N sec-
toral shocks.21 Specifically, the aggregate response in the left
panel is the sum of the disaggregated responses in the right
panel. Clearly, in this case (without interactions among sec-
tors), each sectoral shock affects only the sector from which
the shock originates. The aggregate response for hours is
negative, and the effect persists in the long run. The right
panel indicates that the impact response is positive only for

20 Pesaran and Tosetti (2007) and Chudik and Pesaran (2007) show that
neglecting cross-section dependence. that is, estimating equation (10) with-
out the cross-sectional averages, could cause the estimator of the coefficients
Ail(∀i and l = 0, 1) to be biased. In order to overcome this bias, we estimate
equation (10) and then set Cil (∀i and l = 0, 1) arbitrarily equal to 0. Esti-
mating the bivariate model without including the cross-sectional averages
(as in Kiley, 1998, and Chang & Hong, 2006) would give similar results.

21 The aggregation weights are proportional to the average shipment value
of each sector. Although some sectors have a bigger share in total shipments,
the unweighted average of the impulse responses would be very similar.

a minority of sectors (92 sectors). The results are similar to
Kiley (1998) (and Chang & Hong, 2006, when they use labor
productivity) and confirm previous findings in the literature
(see, e.g., Galí, 1999; Francis & Ramey, 2005).22

When we allow sectoral interactions, we obtain a very dif-
ferent outcome. Figure 2 shows that technology shock to all
sectors now has a positive (short- and long-run) aggregate
impact on total hours in manufacturing. Although the confi-
dence intervals on the impulse responses are wide, the effect
of technology on hours is always significant. The impact of
the shock is generally also much larger in magnitude, high-
lighting the importance of sectoral interactions as an amplifier
of sectoral shocks (Cooper & Haltiwanger, 1996). The right
panel reports the response of each sector (weighted, as dis-
cussed above). Many sectors (169) show a positive impact of
a technology shock on hours, and despite the fact that this
is not the majority, the weighted effect is positive for manu-
facturing as a whole. From figure 2 it is also evident that the
total positive effect is driven by the large response in a few

22 Basu et al. (2006) reach the same conclusion identifying the shocks
from a completely different prospective. They also identify the shocks at
the sectoral level (two-digit SIC) but do not consider sectoral interactions.
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Figure 2.—Impulse Responses to Technology Shocks with Sectoral Interactions

The figure shows impulse responses of labor productivity and hours to a contemporaneous change to the idiosyncratic sectoral technology shock when sectoral interactions are at work. The left panels provides the
aggregate response; the shaded area represents the 90% confidence intervals (Hall’s “percentile interval”; see Hall, 1992) based on bootstrapping 500 draws. The right panels show the sectoral responses weighted by
sectoral average real shipment value, such that the sum of these corresponds to the panels on the left.

sectors; interestingly, these are also the largest supplier sec-
tors.23 Shocks to sectors that are most connected are strongly
amplified by factor demand linkages. Therefore, shocks to
these sectors are the most likely to explain the aggregate busi-
ness cycle, in line with the argument put forward by Horvath
(1998) and recently emphasized by Carvalho (2009). What
is interesting is that the shocks to these sectors give rise to
a positive aggregate response. In the next section, we ana-
lyze in detail how the presence of factor, demand linkages
among sectors is likely to amplify the expansionary effect of
technology shocks.

The role of the factor demand linkages. In the reduced-
form model (10) and (11) all sectors interact, and idiosyn-
cratic sectoral shocks propagate to the manufacturing sector
as a whole through input-output linkages. Because shocks to
sector i affect all other sectors, the response of other sectors
echoes back to the original sector i, thus amplifying the origi-
nal effect of the shock. Sectoral interactions therefore induce

23 The most important five sectors are all part of Chemicals and Allied
Products (specifically SIC codes 2812-13-16 and 2865-69) and largely cor-
respond to sectors with the highest column sum of the weighting matrix.
These are the sectors with the largest number of supply linkages to other
sectors.

a rich set of short-run dynamics. The first effect from sec-
tor i to all the other sectors in the economy is a downstream
propagation from supplier to user (Shea, 2002). At the same
time, we have the second-round effect, a reflex response, as
the original sector is also a user of other sectors’ supplies.
In figure 3 we separate out the two components: the direct
component (the effect of a shock to sector i on the same ith
sector) and the complementary component (the effect of this
shock on all other sectors).24 There is considerable hetero-
geneity in the dynamic response to a technology shock, the
direct effects on hours are generally negative, being positive
for only 96 sectors. However, the direct effect is also rela-
tively small. The complementary effect usually overwhelms
the effect of the shock to the same sector. This is especially
true for the dynamic response of hours.

Sectoral interactions appear to be key to reestablishing a
positive aggregate response of hours to technology shocks.
A shock to a large-input supplier will propagate throughout
the economy as a large fraction of other sectors are affected

24 In appendix B of Holly and Petrella (2010), we derive expressions for the
direct and the complementary effects. We scale them so that the aggregate
response in the left panel of figure 3 can be recovered by summing up all
the direct and complementary effects.
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Figure 3.—Decomposition of the Dynamic Responses to a Technology Shock

The figure shows the decomposition of the responses of labor productivity and hours to an idiosyncratic technology shock at the sectoral level. The original impulse responses are weighted according to industry size,
measured by the real value of shipments. In this way, the sum of the sectoral impulse responses exactly matches the aggregate response reported in figure 2.

by it. Positive shocks to sectors that are most connected are
more likely to get transmitted to other sectors; in fact, the
marginal costs of production in other sectors decrease as
input prices decline and, as a consequence, demand increases.
The impulse response analysis in Carvalho (2009) supports
the presence of this broad comovement in the production of
each sector after a positive technology shock to the sectors
that are the bigger suppliers in the economy. In this sense,
the procyclical effect due to the intermediate input chan-
nel is amplified and overwhelms the effect coming from the
marginal untility of leisure.25 This is in fact consistent with
the empirical evidence in figure 3. The impact response of

25 The standard RBC model assumes that the substitution effect after a
technology shock dominates the wealth effect, therefore implying a positive
shift in labor input. Francis and Ramey (2005) and Vigfusson (2004) show
how the introduction of habits in consumption and investment adjustment
costs inverts their relative importance, giving rise to a temporary fall in
labor supply. Chang, Hornstein, and Sarte (2009) also show that inventory
holding costs, demand elasticities, and price rigidities all have the potential
to affect employment decisions in the face of productivity shocks. Canova,
Lopez-Salido, and Michelacci (2007) show that a negative response of the
labor input is consistent with a Schumpeterian model of creative destruction,
where improvements in technology trigger adjustments along the extensive
margin of the labor market. Kim and Kim (2006) emphasize the role of
the intermediate input channel in producing positive comovement in labor
input.

the complementary effect is generally positive for most of
the sectoral shocks (273 sectors). Furthermore, the aggre-
gate positive comovement between labor and productivity
is driven in particular by the very strong positive com-
plementary effect in those sectors most connected through
input-output linkages.26

Moreover, figure 3 makes clear that the dynamic response
following a technology shock to a particular sector is indeed
different depending on whether the shock originates in
the sector itself or is a shock to other sectors transmitted
through factor demand linkages. According to the aggrega-
tion theorem in Blanchard and Quah (1989), the effect of
the intermediate goods channel, or the effect of aggregate
shocks, is correctly captured by the standard bivariate pro-
cedure applied to each sector separately, if and only if the
response of a sector to other sectors’ shocks is the same as the
response of a sector to its own idiosyncratic sectoral shocks

26 There is a statistically significant positive correlation of 0.44 between
the impact response of the complementary effect and the column sum of the
weighting matrix used in equation (10), a measure of the sector’s impor-
tance as an input supplier. At the same time, there is a positive but limited
correlation of 0.14 between the impact response and the size of the sector.
Notice that this last correlation might simply be a reflection of the fact that
the larger input suppliers tend to be larger in size (the correlation between
these two measures is 0.28).
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Table 2.—Forecast Variance Decomposition

Sector Technology Sector Nontechnology

HORIZON Same Sector Other sectors Same Sector Other sectors Aggregate Technology Monetary Policy

Labor Productivity

1
74.11

(69.7–79.1)

12.33
(6.5–16.0)

2.40
(1.6–2.9)

2.12
(0–3.4)

3.62
(0.3–5.5)

5.38
(1.8–8.2)

2
72.35

(66.7–79.5)

21.49
(13.6–27.1)

0.24
(0.09–0.3)

0.82
(0–1.5)

3.47
(0–6.3)

1.60
(0–3.1)

3
73.66

(67.2–81.3
22.52

(13.9–28.7)

0.04
(0–0.08)

0.15
(0–0.4)

3.39
(0–6.2)

0.20
(0–0.5)

5
73.76

(66.6–82.3)

22.91
(14.0–29.7)

0.003
(0–0.01)

0.01
(0–0.06)

3.28
(0–6.2)

0.01
(0–0.06)

10
73.83

(66.6–83.0)

22.86
(13.3–29.2)

0.0
(0–0)

0.0
(0–0.003)

3.29
(0–6.1)

0.0
(0–0.001)

Hours

1
12.76

(11.0–14.7)

9.69
(2.6–14.3)

41.80
(37.0–46.6)

19.79
(10.4–26.5)

8.83
(1.2–14.4)

7.11
(3.9–9.1)

2
11.42

(9.4–13.4)

20.14
(9.9–27.8)

32.10
(28.0–35.9)

22.81
(13.2–30.6)

7.67
(0–13.6)

5.82
(2.4–8.1)

3
10.96

(8.6–13.1)

26.44
(14.9–36.6)

31.92
(27.0–36.6)

20.11
(9.7–27.8)

5.76
(0–9.6)

4.78
(0.5–7.6)

5
10.97

(8.4–13.3)

28.73
(15.5–40.4)

31.43
(26.2–36.4)

19.95
(10.1–28.0)

4.09
(0–6.9)

4.81
(0–7.5)

10
10.97

(8.2–13.5)

29.12
(14.3–41.1)

31.18
(25.8–36.6)

19.86
(9.6–27.9)

4.01
(0–6.6)

4.82
(0–7.5)

The table reports the mean (weighted average) of the forecast error variance decomposition of productivity and hours. Entries are point estimates at a given horizon (in years) of the percentage contribution to the
forecast error for labor productivity and hours (in level). In parentheses are the associated 90 percent confidence intervals, based on 500 bootstrap draws.

up to a scalar lag distribution. Our results suggest that the
convention of using aggregate data to identify shocks, when
these shocks are likely to originate at the sectoral level, may
be misleading.

Overall these results highlight the quantitative and qualita-
tive importance of the intermediate input channel as a way by
which idiosyncratic sectoral shocks are propagated. They also
draw attention to the potentially important role this channel
might have for understanding the dynamic response of hours
following a technology shock.

B. Variance Decomposition

In this section we decompose forecast variances at the sec-
toral level. This allows us to evaluate the relative role played
by technology compared to nontechnology shocks. Further-
more, we evaluate the importance of the factor demand
linkages among sectors as a transmission mechanism for
idiosyncratic shocks. Since each sector is related to other
sectors, productivity and hours in sector j are explained by
shocks to the jth sector and also by shocks (technology and
non-technology) to other sectors. Table 2 shows that aggre-
gate shocks have a limited role to play in explaining sectoral
movements. In fact, aggregate technology shocks account for
about 5% of the overall variation in labor productivity. For
hours, it declines from an initial 10% to 5%. The role of the
monetary policy shock is also limited. As for sectoral shocks,
technology shocks account for much of the volatility in labor
productivity, but with a sizable part (20% to 25%) originating
in other sectors. The variation in hours is initially dominated
by nontechnology shocks; nevertheless, technology shocks
coming from other sectors are also important. On impact,
technology shocks account for roughly 20% of the variation

in hours, with its role rising steadily to roughly 40%, though
this increase is entirely due to the role of technology shocks
to other sectors. This reflects the fact that the complementary
effect dominates the direct effect in the aggregate response
of hours to a technology shock. Sectoral interactions, in total,
account for roughly 20% of the variation in productivity and
40% of the variation in total hours worked. Clearly, we would
get a very misleading picture if we ignored sectoral interac-
tions because in such a case, the role of technology shocks
in the explanation of total hours would be completely under-
estimated, as it would account for only only 15% to 20% of
the variation.

Once the role of factor demand linkages is accounted for,
the positive conditional correlation between productivity and
hours is reestablished, and technology shocks appear to be
important drivers of aggregate fluctuations.

C. A Historical Decomposition of the Business Cycle

In this section, we provide a historical decomposition
of business cycle fluctuations in the manufacturing sec-
tor. We first consider the importance of aggregate and
sectoral-specific shocks. It is widely agreed that the positive
comovement across sectors is a stylized fact that needs to be
accounted for by any theory of the business cycle. Whether
this comovement and the aggregate business cycle originate
from aggregate or sectoral shocks amplified by sectoral inter-
actions or a combination of the two is not clear a priori
(Cooper and Haltiwanger, 1996). To evaluate the importance
of the aggregate shocks, we compute the contribution of those
to the total variation in aggregate manufacturing productivity
and hours by looking at the partial R2 and the cross-section
pairwise correlations that can be attributed to the aggregate
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Figure 4.—Business Cycle, Historical Decomposition: Sectoral versus Aggregate Shocks

The figure shows a historical decomposition of the aggregate growth rate of output and hours into sector-specific and aggregate shocks. The continuous line represents the actual data, the dashed line with circles the
simulated data with only sector-specific shocks, the dashed line with squares the aggregate technology shock, and the dashed line with triangles is the component associated with monetary policy shocks.

shocks, λidt . The average partial R2 is approximately just
8% for both labor productivity and hours.27 Furthermore, the
aggregate component is able to explain only a small part of
the comovement (see the top panel of table 1); indeed, the
average pairwise correlation of the aggregate component is
0.05 for labor productivity and 0.044 for hours.

In figure 4 we decompose the historical aggregate business
cycle for manufacturing into that which is attributable to sec-
toral shocks and that which is attributable to the aggregate
technology and monetary shocks.28 The figure clearly shows
that the bulk of aggregate volatility is to be attributed to sec-
toral shocks.29 The aggregate technology shock plays a very
limited role. However, a bigger role can be assigned to mon-
etary policy shocks. Interestingly, monetary policy seems to
account for the recession in the early 1980s, corresponding
to the Volcker disinflation. These results suggest that the
role of aggregate shocks, in particular those to technology,
in explaining the aggregate business cycle in manufacturing
is limited.

In order to assess the role of different types of shocks
originating at the sectoral level, figure 5 shows simulated
aggregate hours and output growth implied by the industry-
specific technology and nontechnology shocks. Of the total
variation explained by industry-specific shocks, technology
shocks are responsible for almost 50% of the variation in

27 The fit of the whole SVARX, equation (10), measured by the average
value of the generalized R2 (Pesaran and Smith, 1994), is approximately
0.29 for labor productivity and 0.55 for hours.

28 Labor productivity is defined as output per hours worked, so output
growth can be recovered. The exact procedure for aggregation is discussed
in appendix D of Holly and Petrella (2010).

29 On empirical grounds, Long and Plosser (1987) first investigated
whether the source of business cycle fluctuations is aggregate or sector
specific. Their analysis is consistent with the existence of a single aggre-
gate disturbance whose explanatory power is, however, limited. Similar
results are reported by Cooper and Haltiwanger (1996). Conley and Dupor
(2003) also support the sectoral origin of the business cycle. On the other
hand, Foerster et al. (2008) report evidence that most of the variance of
industrial production at the sectoral level is explained by the presence of
two aggregate factors, even after controlling for the role of factor demand
linkages.

aggregate manufacturing output and 40% of the variation in
the change in total hours. Overall technology and nontech-
nology shocks seem to be equally important for explaining
aggregate fluctuations. Nevertheless, some differences are
clear. Technology shocks appear to account for most of the
cyclical volatility in the second part of the sample; from
approximately 1980, the share of variance accounted for by
technology shocks rises from (approximately) 37% to 73%
for output and 27% to 70% for hours. By contrast, nontech-
nology shocks appear to be more important in the earlier
period, from 1960 to 1980. Furthermore, the slowdown at
the beginning of the 1990s seems to be largely the result of
technology shocks (Hansen & Prescott, 1993). These results
are generally consistent with the view that demand shocks
were the main driver of the business cycle before the 1980s,
whereas supply-side shocks have gained importance since
then (Galí & Gambetti, 2009). Interestingly the latest period
also corresponds to a steady decrease in aggregate volatility,
the so-called great moderation (see Stock & Watson, 2002a).

Franco and Philippon (2007) argue that the main source
of aggregate fluctuations can be identified by looking at the
pair-wise cross-sectional correlations between the shocks at a
disaggregated level. The intuition can be traced back to Lucas
(1981); with the law of large numbers at work, shocks at the
disaggregated level need to be highly correlated in order for
idiosyncractic shocks to be able to explain aggregate volatil-
ity. However, this does not take into account the amplification
mechanism that might result from sectoral interactions. In
figure 5 we show that shocks that are almost equally uncor-
related with each other (see the bottom panel of table 1) are
able to explain a large part of the aggregate variation in man-
ufacturing once the amplification mechanism coming from
sectoral interactions is allowed for.

The results above underline the role of factor demand link-
ages in reproducing aggregate fluctuations. In figure 6 we
show a decomposition of the business cycle that is directly
attributable to shocks, both aggregate and sector specific,
and plot them against the actual data (the difference can be
attributed to the amplification role of the intermediate input
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Figure 5.—Business Cycle, Historical Decomposition: Technology versus Nontechnology Shocks

The figure shows a historical decomposition of the aggregate growth rate of manufacturing output and hours into that which is attributable to technology (left) and nontechnology shocks (right). The continuous line
represents actual data, the dashed line with circles simulated data with only technology shocks, and the dotted line with squares denotes nontechnology shocks.

Figure 6.—Business Cycle, Historical Decomposition: The Role of

Factor-Demand Linkages

The figure shows the aggregate growth rate of output and hours and the simulated series with aggregate
and idiosyncratic shocks but excluding sectoral interactions. The continuous line represents the actual data
and the broken line with dots the simulated data with aggregate and idiosyncratic shocks but excluding
sectoral interactions.

channel). The pattern that emerges is revealing. With our
specification, the propagation and amplification mechanism
arising from the presence of factor demand linkages among
sectors appears to be key to reproducing aggregate business
cycle fluctuations.

VI. Some Robustness Checks

In order to test the robustness of our results, we have
performed a number of checks. First, we replicated our

results using different measures of hours, employment, hours
worked, and labor productivity. The results, not reported here,
confirm the previous analysis.

Second, we generated the cross-sectional averages by
using the first IO matrix for the subsample up until 1980
and the second thereafter instead of using the simple average
of two different input-output matrices for 1977 and 1987. The
left panel of figure 7 plots the short-run responses of hours to
a permanent shock to labor productivity for this case in rela-
tion to the baseline specification. The general results do not
seem to be altered; the cross-sectional correlation between
the two estimates across 458 industries is 0.99.

Third, to address possible problems with only 37 annual
observations for each industry, we repeated the analysis by
pooling sectors at the three-digit SIC level; each more aggre-
gated sector is estimated as a pooled VAR (as in Chang
& Hong, 2006). This implicitly assumes that heterogeneity
among industries in the same three-digit class is limited rel-
ative to heterogeneity across different industries. The right
panel of figure 7 reports the short-run response of hours to a
technology shock for the two specifications. Again, the over-
all conclusions are not qualitatively affected; the correlation
between the two results is 0.82. However, the baseline spec-
ification at the four-digit level gives rise to a larger impulse
response of hours in aggregate. This is consistent with the
theoretical findings of Swanson (2006), who shows that het-
erogeneity itself might be a source of amplification for shocks
hitting the economy.

Next we examined the robustness of our results to the
choice of conditioning aggregate shocks. Which shocks or
factors to include is not uncontroversial. Earlier we used a
measure of aggregate technology so as not to attribute all
the effect of technology shocks to the sector-specific shocks.
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Figure 7.—Robustness to VAR Specification

x-axis: short-run responses of hours to permanent shocks to labor productivity from the baseline specification. y-axis: short-run response of hours to permanent shocks to labor productivity, controlling for time-varying
input-output matrices (left) and pooling sectors to the three-digit SIC level (right).

Figure 8.—Robustness to the Choice of Aggregate Shocks

x-axis: short-run responses of hours to permanent shocks to labor productivity from the baseline specification. y-axis: short-run response of hours to permanent shocks to labor productivity, controlling for different
choices of the aggregate shocks.

However, the measure derived by Basu et al. (2006) does not
explicitly consider possible amplification due to the input-
output linkages. To check the robustness of our findings, we
have computed the impulse responses for hours worked to
a permanent productivity shock for different aggregate fac-
tors. We consider three different combinations of possible
aggregate shocks. In the left panel of figure 8, we include
shocks similar to Shea (2002), specifically, an exogenous oil
production shock30 as well as the spread between six-month
commercial paper and the Treasury Bill interest rate, which
is intended to proxy for monetary policy (Friedman & Kut-
tner, 1992).31 In the central panel of figure 8, we include the
oil production shock and the growth rate of real government
defense spending to proxy for exogenous government spend-
ing shocks.32 In the last panel, we use the growth rate of real
government defense spending and the monetary policy shock.

30 The data for the oil production shock are from Kilian (2008). This
series measures the shortfall of OPEC oil production caused by exogenous
political events such as wars or civil disturbances. This paper’s yearly shock
is the sum of the quarterly shocks.

31 The inclusion of the commercial paper spread as a measure of monetary
policy produces results that are quantitatively and qualitatively very similar
to those with a monetary policy shock measured as in Christiano et al.
(1999) and reported in the previous sections.

32 Ramey and Shapiro (1998) highlight that military buildups correspond
to the big upswings in military spending during the period under analysis.
Using dummy variables corresponding to the military buildups dates would
give very similar results.

As shown in figure 8, which aggregate factor we use does not
significantly alter the results of the previous section. All spec-
ifications give quantitatively similar results, and the short-run
response for all sectors is strongly correlated with the base-
line specification (furthermore, the correlation increases if
longer horizons are considered). Moreover, all specifications
show a positive aggregate response of hours to a productivity
shock.

As a final robustness check, following Chang and Hong
(2006), we replicated the results using total factor produc-
tivity (TFP). Specifically, we identify technology shocks as
permanent shocks to TFP and approximate the role of the
intermediate input channel by including the cross-sectional
average of TFP as in equation (10). Figure 9 provides evi-
dence of the direct and complementary effect on hours when
shocks are identified using TFP. The main difference is that
in this case, the direct effect of the shocks is generally pos-
itive. However, even by using TFP, the aggregate response
of hours is dominated by the complementary effect, which is
positive and much larger than the direct effect. Similar to the
shocks identified from labor productivity, the larger the role
of the sector as an input supplier in the economy, the larger
the effect of the shocks will be. The intermediate input chan-
nel continues to provide a strong amplification mechanism
for idiosyncratic shocks and to be the key mechanism for
understanding aggregate responses. Furthermore, although
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Figure 9.—Dynamic Response of Total Hours Worked to a Permanent Shock to TFP

The figure reports the direct and complementary effect on total hours of a technology shock identified from the bivariate VAR with TFP and total hours as suggested by Chang and Hong (2006). The shocks are
identified from equation (10), which uses the cross-sectional average computed from the input-output matrix to proxy for sectoral interactions.

the impulse responses of TFP are not strictly comparable
to those for labor productivity, the similarity between the
identified responses is still surprisingly high. The correlation
between the short-run responses of this specification of the
model with respect to the baseline is 0.59 for hours, whereas
for labor productivity and TFP, the correlation is 0.88.

VII. Conclusion

This paper has investigated the role of factor demand
linkages in the propagation of shocks across the economy.
Using data on highly disaggregated manufacturing indus-
tries from 1958 to 1996, we construct a structural sectoral
VAR (SecVAR) and estimate a series of bivariate models for
productivity and hours. Weighted averages of sectoral vari-
ables, where the weights are derived from the input-output
matrix, are used to recover the effect of sectoral interactions.
In line with the real business cycle model of Long and Plosser
(1983), Horvath (1998, 2000), and Carvalho (2009) factor-
demand linkages prove to be an important amplifier of the
shocks hitting the economy. Most important, we show that
the contraction in hours worked in response to a technology
shock found in many other studies remains if sectoral interac-
tions via the input-output matrix are ignored. However, when
the latter are incorporated into the model, technology shocks
generate an increase in hours and are an important source
of fluctuations in output. This is because the intermediate
input channel itself provides an additional explanation for a
positive shift in hours.

This paper clearly points to some of the potential problems
that may arise when sectoral interactions are ignored.
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