173 research outputs found

    Cultivar and Year-to-Year Variation of Phytosterol Content in Rye (Secale cereale L.)

    Get PDF
    Intake of phytosterols (and -stanols) has been shown to decrease the level of low-density lipoprotein cholesterol and thus protect against development of cardiovascular diseases. Therefore, studies on the cultivar and year-to-year variation in phytosterol content in rye grains have been performed. The phytosterol content and composition of different rye cultivars, grown under identical conditions on the same field in three consecutive years, were analyzed. Both cultivar and year-to-year variation in sterol content were statistically significant (p < 0.0001). The total sterol content varied from 1007 ± 21 mg/kg in the highest yielding cultivar, Tsulpan 3, to 761 ± 10 mg/kg in the lowest yielding cultivar (Amando in the 1999 harvest). Because the meteorological conditions varied substantially between the different years, it was possible to deduce the impact of varying weather conditions on phytosterol content in the different cultivars. The studied cultivars had all the lowest phytosterol contents in the dry and warm harvest season of 1999. Although there were statistically significant cultivar and year-to-year variations in the sterol composition (p < 0.0001), these were only between 2 and 4% of the total sterol content

    Combining Multiple Classifiers with Dynamic Weighted Voting

    Get PDF
    When a multiple classifier system is employed, one of the most popular methods to accomplish the classifier fusion is the simple majority voting. However, when the performance of the ensemble members is not uniform, the efficiency of this type of voting generally results affected negatively. In this paper, new functions for dynamic weighting in classifier fusion are introduced. Experimental results demonstrate the advantages of these novel strategies over the simple voting scheme

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    Bias and temperature dependence of the 0.7 conductance anomaly in Quantum Point Contacts

    Full text link
    The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as a function of temperature. We investigate in detail how, for a given gate voltage, the differential conductance depends on the finite bias voltage and find a so-called self-gating effect, which we correct for. The 0.7 anomaly at zero bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at finite bias. Varying the gate voltage the transition between the 1.0 and the 0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate voltage dependent energy difference Δ\Delta. This energy difference is compared with the activation temperature T_a extracted from the experimentally observed activated behavior of the 0.7 anomaly at low bias. We find \Delta = k_B T_a which lends support to the idea that the conductance anomaly is due to transmission through two conduction channels, of which the one with its subband edge \Delta below the chemical potential becomes thermally depopulated as the temperature is increased.Comment: 9 pages (RevTex) with 9 figures (some in low resolution

    Measurement of atmospheric elemental carbon: Real-time data for Los Angeles during summer 1987

    Full text link
    Two fundamentally different techniques for measuring atmospheric elemental carbon (EC) aerosol were compared to validate the methods. One technique, photoacoustic spectroscopy, was used to measure the optical absorption ([lambda] = 514.5 nm) of in situ atmospheric aerosol in real time. This optical absorption can be converted to EC concentration using the appropriate value of the absorption cross-section for C, so that a comparison could be made with the second technique, thermal-optical analysis of filter-collected samples, which measures the collected EC by combustion. Solvent extraction of the filter samples prior to the thermal analysis procedure was required to minimize errors due to pyrolysis of organic carbon. Excellent 1:1 correlation of atmospheric EC concentrations resulted for measurements by the photoacoustic method vs the thermal method over coincident sampling times. The linear regression gave y = 1.006 (+/-0.056) x+0.27 (+/-0.56) with R = 0.945 (n = 41), where y is the photoacoustic EC concentration and x is the thermal elemental carbon concentration, both in [mu]g m-3. This data set was collected in Los Angeles as part of the Southern California Air Quality Study (SCAQS) during the summer 1987, and supplements the results of an earlier, more limited data set taken in Dearborn, MI. The diurnal variability of EC aerosol in Los Angeles during SCAQS, as determined by photoacoustic spectroscopy, is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28903/1/0000740.pd

    Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects

    Full text link
    We study muon-spin rotation (muSR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta (BSCCO), by modeling the fluid and solid phases of pancake vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of muSR lineshapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the muSR data for BSCCO in this regime can be obtained through the ansatz that this ``phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of muSR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations.Comment: 50 pages Latex file, including 10 postscript figure

    Threshold Bound States

    Full text link
    Relationships between the coupling constant and the binding energy of threshold bound states are obtained in a simple manner from an iterative algorithm for solving the eigenvalue problem. The absence of threshold bound states in higher dimensions can be easily understood

    Interaction of inflammatory cytokines and erythropoeitin in iron metabolism and erythropoiesis in anaemia of chronic disease

    Get PDF
    In chronic inflammatory conditions increased endogenous release of specific cytokines (TNFα, IL-1, IL-6, IFNγ and others) is presumed. It has been shown that those of monocyte lineage play a key role in cytokine expression and synthesis. This may be associated with changes in iron metabolism and impaired erythropoiesis and may lead to development of anaemia in patients with rheumatoid arthritis. Firstly, increased synthesis of acute phase proteins, like ferritin, during chronic inflammation is proposed as the way by which the toxic effect of iron and thereby the synthesis of free oxy-radicals causing the damage on the affected joints, may be reduced. This is associated with a shift of iron towards the mononuclear phagocyte system which may participate in the development of anaemia of chronic disease. Secondly, an inhibitory action of inflammatory cytokines (TNFα, IL-1), on proliferation and differentiation of erythroid progenitors as well as on synthesis of erythropoietin has been shown, thereby also contributing to anaemia. Finally, chronic inflammation causes multiple, complex disturbances in the delicate physiologic equilibrium of interaction between cytokines and cells (erythroid progenitors, cells of mononuclear phagocyte system and erythropoietin producing cells) leading to development of anaemia of chronic disease (Fig. 1)
    corecore