28,393 research outputs found

    Particle parameter analyzing system

    Get PDF
    An X-Y plotter circuit apparatus is described which displays an input pulse representing particle parameter information, that would ordinarily appear on the screen of an oscilloscope as a rectangular pulse, as a single dot positioned on the screen where the upper right hand corner of the input pulse would have appeared. If another event occurs, and it is desired to display this event, the apparatus is provided to replace the dot with a short horizontal line

    A solid-state low-noise preamplifier

    Get PDF
    Solid state low noise preamplifier for particle detector of electrostatic accelerator syste

    Connectivity and a Problem of Formal Geometry

    Full text link
    Let P=Pm(e)×Pn(h)P=\mathbb P^m(e)\times\mathbb P^n(h) be a product of weighted projective spaces, and let ΔP\Delta_P be the diagonal of P×PP\times P. We prove an algebraization result for formal-rational functions on certain closed subvarieties XX of P×PP\times P along the intersection XΔPX\cap\Delta_P.Comment: 9 pages, to appear in the Proceedings volume "Experimental and Theoretical Methods in Algebra, Geometry and Topology", series Springer Proceedings in Mathematics & Statistic

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    A reduced coupled-mode description for the electron-ion energy relaxation in dense matter

    Get PDF
    We present a simplified model for the electron-ion energy relaxation in dense two-temperature systems that includes the effects of coupled collective modes. It also extends the standard Spitzer result to both degenerate and strongly coupled systems. Starting from the general coupled-mode description, we are able to solve analytically for the temperature relaxation time in warm dense matter and strongly coupled plasmas. This was achieved by decoupling the electron-ion dynamics and by representing the ion response in terms of the mode frequencies. The presented reduced model allows for a fast description of temperature equilibration within hydrodynamic simulations and an easy comparison for experimental investigations. For warm dense matter, both fluid and solid, the model gives a slower electron-ion equilibration than predicted by the classical Spitzer result

    Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles

    Get PDF
    Ensembles of nitrogen-vacancy centers in diamond are a highly promising platform for high-sensitivity magnetometry, whose efficacy is often based on efficiently generating and monitoring magnetic-field dependent infrared fluorescence. Here we report on an increased sensing efficiency with the use of a 532-nm resonant confocal cavity and a microwave resonator antenna for measuring the local magnetic noise density using the intrinsic nitrogen-vacancy concentration of a chemical-vapor deposited single-crystal diamond. We measure a near-shot-noise-limited magnetic noise floor of 200 pT/Hz\sqrt{\text{Hz}} spanning a bandwidth up to 159 Hz, and an extracted sensitivity of approximately 3 nT/Hz\sqrt{\text{Hz}}, with further enhancement limited by the noise floor of the lock-in amplifier and the laser damage threshold of the optical components. Exploration of the microwave and optical pump-rate parameter space demonstrates a linewidth-narrowing regime reached by virtue of using the optical cavity, allowing an enhanced sensitivity to be achieved, despite an unoptimized collection efficiency of <2 %, and a low nitrogen-vacancy concentration of about 0.2 ppb.Comment: 10 pages and 5 figure

    Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations

    Get PDF
    We investigate the microscopic structure of strongly coupled ions in warm dense matter using ab initio simulations and hypernetted chain (HNC) equations. We demonstrate that an approximate treatment of quantum effects by weak pseudopotentials fails to describe the highly degenerate electrons in warm dense matter correctly. However, one-component HNC calculations for the ions agree well with first-principles simulations if a linearly screened Coulomb potential is used. These HNC results can be further improved by adding a short-range repulsion that accounts for bound electrons. Examples are given for recently studied light elements, lithium and beryllium, and for aluminum where the extra short-range repulsion is essential

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Get PDF
    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included
    corecore