1,390 research outputs found
Zero-point vacancies in quantum solids
A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a
quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known
that both JWF and SWF describe a quantum solid with also a finite equilibrium
concentration of vacancies x_v. We outline a route for estimating x_v by
exploiting the existing formal equivalence between the absolute square of the
ground state wave function and the Boltzmann weight of a classical solid. We
compute x_v for the quantum solids described by JWF and SWF employing very
accurate numerical techniques. For JWF we find a very small value for the zero
point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently
gives the best variational description of solid 4He, we find the significantly
larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also
study two and three vacancies. We find that there is a strong short range
attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy
Alfven node-free vibrations of white dwarf in the model of solid star with toroidal magnetic field
In the context of the white dwarf asteroseismology, we investigate
vibrational properties of a non-convective solid star with an axisymmetric
purely toroidal intrinsic magnetic field of two different shapes. Focus is laid
on regime of node-free global Lorentz-force-driven vibrations about symmetry
axis at which material displacements have one and the same form as those for
nodeless spheroidal and torsional vibrations restored by Hooke's force of
elastic shear stresses. Particular attention is given to the even-parity
poloidal Alfven modes whose frequency spectra are computed in analytic form
showing how the purely toroidal magnetic fields completely buried beneath the
star surface can manifest itself in seismic vibrations of non-magnetic white
dwarfs. The obtained spectral formulae are discussed in juxtaposition with
those for Alfven modes in the solid star model with the poloidal, homogeneous
internal and dipolar external, magnetic field whose inferences are relevant to
Alfven vibrations in magnetic white dwarfs.Comment: Accepted for publication in Astrophysics & Space Scienc
Lines, Circles, Planes and Spheres
Let be a set of points in , no three collinear and not
all coplanar. If at most are coplanar and is sufficiently large, the
total number of planes determined is at least . For similar conditions and
sufficiently large , (inspired by the work of P. D. T. A. Elliott in
\cite{Ell67}) we also show that the number of spheres determined by points
is at least , and this bound is best
possible under its hypothesis. (By , we are denoting the
maximum number of three-point lines attainable by a configuration of
points, no four collinear, in the plane, i.e., the classic Orchard Problem.)
New lower bounds are also given for both lines and circles.Comment: 37 page
Learning from the world? Horizontal knowledge flows and geopolitics in international consulting firms
This paper examines the nature of the contemporary multinational corporation (MNC) through a study of the use of knowledge management systems (KMS) in four major international consulting firms. In particular, we explore whether and how such systems facilitate horizontal (inter-subsidiary) flows of knowledge, as described in the network view of the MNC. Our analysis reveals the presence of horizontal flows within the four firms, but flows that are contextually constrained and partly shaped by geopolitical power relations. Thus, our study gives some support to the image of the MNC as a network whilst highlighting the contextual limits of horizontal knowledge transfer and, importantly, the geopolitical conditions under which such knowledge transfer takes place. At the same time, it challenges the claim that consulting firms are model organizations in the area of knowledge management as well as the more negative view that questions the ability of KMS to facilitate knowledge transfer
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
Channel diffusion of sodium in a silicate glass
We use classical molecular dynamics simulations to study the dynamics of
sodium atoms in amorphous NaO-4SiO. We find that the sodium
trajectories form a well connected network of pockets and channels. Inside
these channels the motion of the atoms is not cooperative but rather given by
independent thermally activated hops of individual atoms between the pockets.
By determining the probability that an atom returns to a given starting site,
we show that such events are not important for the dynamics of this system.Comment: 10 pages of Latex, 5 figures, one figure added, text expande
Scaling of Island Growth in Pb Overlayers on Cu(001)
The growth and ordering of a Pb layer deposited on Cu(001) at 150 K has been
studied using atom beam scattering. At low coverage, ordered Pb islands with a
large square unit cell and nearly hexagonal internal structure are formed. This
is a high order commensurate phase with 30 atoms in the unit cell. From the
measurement of the island diffraction peak profiles we find a power law for the
mean island - size versus coverage with an exponent . A
scaling behavior of growth is confirmed and a simple model describing island
growth is presented. Due to the high degeneracy of the monolayer phase,
different islands do not diffract coherently. Therefore, when islands merge
they still diffract as separate islands and coalescence effects are thus
negligible. From the result for we conclude that the island density is
approximately a constant in the coverage range where the
ordered islands are observed. We thus conclude that most islands nucleate at
and then grow in an approximately self similar fashion as
increases.Comment: 23 pages, 10 Figures (available upon request). SU-PHYS-93-443-375
Can a supernova be located by its neutrinos?
A future core-collapse supernova in our Galaxy will be detected by several
neutrino detectors around the world. The neutrinos escape from the supernova
core over several seconds from the time of collapse, unlike the electromagnetic
radiation, emitted from the envelope, which is delayed by a time of order
hours. In addition, the electromagnetic radiation can be obscured by dust in
the intervening interstellar space. The question therefore arises whether a
supernova can be located by its neutrinos alone. The early warning of a
supernova and its location might allow greatly improved astronomical
observations. The theme of the present work is a careful and realistic
assessment of this question, taking into account the statistical significance
of the various neutrino signals. Not surprisingly, neutrino-electron forward
scattering leads to a good determination of the supernova direction, even in
the presence of the large and nearly isotropic background from other reactions.
Even with the most pessimistic background assumptions, SuperKamiokande (SK) and
the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to
be within circles of radius and , respectively. Other
reactions with more events but weaker angular dependence are much less useful
for locating the supernova. Finally, there is the oft-discussed possibility of
triangulation, i.e., determination of the supernova direction based on an
arrival time delay between different detectors. Given the expected statistics
we show that, contrary to previous estimates, this technique does not allow a
good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds
some brief comment
- …