40,273 research outputs found

    Viscosity and thermal conductivity of model Jupiter atmospheres

    Get PDF
    The viscosity and thermal conductivity coefficient are estimated for three models of the atmosphere of Jupiter: a heavy model consisting of 22% helium and 78% hydrogen, a nominal model consisting of 11% helium and 89% hydrogen, and a light model consisting of pure hydrogen. The effect of trace elements is neglected. Linearized approximations are used for the transport coefficients of the mixtures; these are found to be in almost constant ratio to the values for pure hydrogen, independent of temperature. Short Basic language programs for computing the coefficients are listed

    How many nucleosynthesis processes exist at low metallicity?

    Full text link
    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.Comment: 13 pages, published in Ap

    High voltage breakdown initiated by particle impact

    Get PDF
    High voltage breakdown initiated by particle impact across electrode ga

    Ionization from Fe atoms incident on various gas targets

    Get PDF
    Ionization from iron atoms incident on target gases of helium, neon, nitrogen, carbon dioxide, and ai

    Sources of magnetic fields in recurrent interplanetary streams

    Get PDF
    The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees

    Parametric vision simulation study, part 2 Final report

    Get PDF
    Effects of landing site redesignation on visibility during manned lunar landin

    Pooling problem: Alternate formulations and solution methods

    Get PDF
    Copyright @ 2004 INFORMSThe pooling problem, which is fundamental to the petroleum industry, describes a situation in which products possessing different attribute qualities are mixed in a series of pools in such a way that the attribute qualities of the blended products of the end pools must satisfy given requirements. It is well known that the pooling problem can be modeled through bilinear and nonconvex quadratic programming. In this paper, we investigate how best to apply a new branch-and-cut quadratic programming algorithm to solve the pooling problem. To this effect, we consider two standard models: One is based primarily on flow variables, and the other relies on the proportion. of flows entering pools. A hybrid of these two models is proposed for general pooling problems. Comparison of the computational properties of flow and proportion models is made on several problem instances taken from the literature. Moreover, a simple alternating procedure and a variable neighborhood search heuristic are developed to solve large instances and compared with the well-known method of successive linear programming. Solution of difficult test problems from the literature is substantially accelerated, and larger ones are solved exactly or approximately.This project was funded by Ultramar Canada and Luc Massé. The work of C. Audet was supported by NSERC (Natural Sciences and Engineering Research Council) fellowship PDF-207432-1998 and by CRPC (Center for Research on Parallel Computation). The work of J. Brimberg was supported by NSERC grant #OGP205041. The work of P. Hansen was supported by FCAR(Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) grant #95ER1048, and NSERC grant #GP0105574
    corecore