1,818 research outputs found

    First contact distributions for spatial patterns: regularity and estimation

    Get PDF
    For applications in spatial statistics an important property of a random set X in Rk is its rst contact distribution This is the distribution of the distance from a xed point to the nearest point of X where distance is measured using scalar dilations of a xed test set B We show that if B is convex and contains a neighbourhood of the rst contact distribution function FB is absolutely continuous We give two explicit representations of FB and additional regularity conditions under which FB is continuously dierentiable A KaplanMeier estimator of FB is introduced and its basic properties examine

    Sensitive Observations of Radio Recombination Lines in Orion and W51: The Data and Detection of Systematic Recombination Line Blueshifts Proportional to Impact Broadening

    Full text link
    Sensitive spectral observations made in two frequency bands near 6.0 and 17.6 GHz are described for Orion and W51. Using frequency switching we were able to achieve a dynamic range in excess of 10,000 without fitting sinusoidal or polynomial baselines. This enabled us to detect lines as weak as TA 1mKinthesestrongcontinuumsources.Hydrogenrecombinationlineswith_{A} ~1mK in these strong continuum sources. Hydrogen recombination lines with \Delta n$ as high as 25 have been detected in Orion. In the Orion data, where the lines are stronger, we have also detected a systematic shift in the line center frequencies proportional to linewidth that cannot be explained by normal optical depth effects.Comment: 22 pages, 13 figures. Accepted for publication in Astrophysics and Space Scienc

    Consistent Anisotropic Repulsions for Simple Molecules

    Full text link
    We extract atom-atom potentials from the effective spherical potentials that suc cessfully model Hugoniot experiments on molecular fluids, e.g., O2O_2 and N2N_2. In the case of O2O_2 the resulting potentials compare very well with the atom-atom potentials used in studies of solid-state propertie s, while for N2N_2 they are considerably softer at short distances. Ground state (T=0K) and room temperatu re calculations performed with the new NNN-N potential resolve the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure

    Bias and temperature dependence of the 0.7 conductance anomaly in Quantum Point Contacts

    Full text link
    The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as a function of temperature. We investigate in detail how, for a given gate voltage, the differential conductance depends on the finite bias voltage and find a so-called self-gating effect, which we correct for. The 0.7 anomaly at zero bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at finite bias. Varying the gate voltage the transition between the 1.0 and the 0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate voltage dependent energy difference Δ\Delta. This energy difference is compared with the activation temperature T_a extracted from the experimentally observed activated behavior of the 0.7 anomaly at low bias. We find \Delta = k_B T_a which lends support to the idea that the conductance anomaly is due to transmission through two conduction channels, of which the one with its subband edge \Delta below the chemical potential becomes thermally depopulated as the temperature is increased.Comment: 9 pages (RevTex) with 9 figures (some in low resolution

    Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview

    Get PDF
    Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundaments for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.Comment: 95 pages, 48 figure

    Anomalous Effects of "Guest" Charges Immersed in Electrolyte: Exact 2D Results

    Full text link
    We study physical situations when one or two "guest" arbitrarily-charged particles are immersed in the bulk of a classical electrolyte modelled by a Coulomb gas of positive/negative unit point-like charges, the whole system being in thermal equilibrium. The models are treated as two-dimensional with logarithmic pairwise interactions among charged constituents; the (dimensionless) inverse temperature β\beta is considered to be smaller than 2 in order to ensure the stability of the electrolyte against the collapse of positive-negative pairs of charges. Based on recent progress in the integrable (1+1)-dimensional sine-Gordon theory, exact formulas are derived for the chemical potential of one guest charge and for the asymptotic large-distance behavior of the effective interaction between two guest charges. The exact results imply, under certain circumstances, anomalous effects such as an effective attraction (repulsion) between like-charged (oppositely-charged) guest particles and the charge inversion in the electrolyte vicinity of a highly-charged guest particle. The adequacy of the concept of renormalized charge is confirmed in the whole stability region of inverse temperatures and the related saturation phenomenon is revised.Comment: 21 pages, 1 figur

    A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid

    Full text link
    A mesoscopic colloid model is developed in which a spherical colloid is represented by many interacting sites on its surface. The hydrodynamic interactions with thermal fluctuations are taken accounts in full using Dissipative Particle Dynamics, and the electrostatic interactions are simulated using Particle-Particle-Particle Mesh method. This new model is applied to investigate the electrophoretic mobility of a charged colloid under an external electric field, and the influence of salt concentration and colloid charge are systematically studied. The simulation results show good agreement with predictions from the electrokinetic theory.Comment: 17 pages, 8 figures, submitted to the proceedings of High Performance Computing in Science & Engineering '1

    A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2

    Get PDF
    The A-dependence of the quasielastic A(e,e'p) reaction has been studied at SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the average probability that the struck proton escapes from the nucleus A without interaction. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as Color Transparency. No significant rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
    corecore