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Abstract

For applications in spatial statistics� an important property of a random set X in Rk is

its �rst contact distribution� This is the distribution of the distance from a �xed point � to

the nearest point of X� where distance is measured using scalar dilations of a �xed test set B�

We show that� if B is convex and contains a neighbourhood of �� the �rst contact distribution

function FB is absolutely continuous� We give two explicit representations of FB � and additional

regularity conditions under which FB is continuously di�erentiable� A Kaplan�Meier estimator

of FB is introduced and its basic properties examined�
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� Introduction

The statistical analysis of a spatial pattern often involves treating the pattern as a realisation of a

stationary random set X in R
k � observed within a bounded window W � and estimating properties

of X � A particularly useful property is the �rst contact distribution function FB of X with respect

to a test set B � R
k � de�ned as

FB�r� � PfX � rB �� �g� r � ��

where rB denotes the scalar dilation of B by the factor r� In other words this is the distribution

function of the �distance	 from � to X �

�B��� X� � inffr � � 
 X � rB �� �g�
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If B is the unit ball in Rk � then �B��� X� is the usual Euclidean distance from � to the nearest point

of X � and FB is called the spherical contact distribution function or empty space function� If B is a

line segment of unit length with one endpoint at �� then �B��� X� is the shortest distance from � to

X along the line drawn through the segment B� and FB is known as the linear contact distribution�

These two special cases of B have been used extensively in applications� The exact form of FB is

known for certain stochastic models� enabling parameter estimation and �Monte Carlo� hypothesis

testing� A qualitative summary of the pattern is available by plotting the estimated FB against the

theoretical FB for an appropriate Poisson random set model� Isotropy �rotational invariance� of the

pattern can be tested by comparing the linear contact distributions obtained from line segments at

di�erent orientations� See e�g� Cressie ����� Diggle ������ Matheron������ Ripley ������ Serra

������ Stoyan et al� �����

There are many reasons for studying FB with more general test sets B� Firstly� in practice� digital

image analysers do not estimate the spherical contact function but rather a discrete approximation

to it� in which the disc B is replaced by a polygon� Secondly� the linear contact function is degenerate

or unde�ned for point processes� To investigate isotropy of a point process one might estimate FB for

�say� ellipses B of di�erent orientations and eccentricities� this can be computed by applying linear

transformations to the pattern and estimating the spherical contact function� Other sets B are also

of interest� Thirdly� the spherical and linear contact distributions do not completely characterise

the random set X � The distribution of X is� however� determined by the values of

T �K� � PfX �K �� �g

for all compact subsets K of Rk �Matheron� ����� The contact distributions FB�r� � T �rB�

evaluate T on certain subclasses of compact sets� Enlarging the class of sets K for which T �K� is

known should provide better information about X �

A form of censoring occurs when X is observed only inside a bounded window W � The distance

T � �B��� X� is not observable� since the nearest point ofX may be outsideW � E�ectively T is right�

censored by C � �B��� �W �� the distance to the boundary �W of the window� This interpretation

can be used to derive a Kaplan�Meier type estimator for FB �

Baddeley and Gill ���� ��� studied the spherical contact distribution of a stationary point

process X � developed the censoring analogy� showed that FB is continuously di�erentiable� con�

structed a Kaplan�Meier estimator bFB of FB � and established some basic properties of bFB � Hansen
et al� ���� treated the linear contact distribution of a stationary random set � showed that FB is

absolutely continuous on ������ constructed the analogous Kaplan�Meier estimator and established

the same basic properties�

In the present paper we treat the case of a general test set B which is convex and contains a

neighbourhood of �� This encompasses the spherical case but not the linear case treated in Hansen

et al� �����

The plan of the paper is as follows� Section � includes some preliminary notation and results from

spatial statistics� In Section �� it is proved that the �rst contact distribution function is absolutely

continuous for test sets in the class of convex bodies and under further regularity conditions on the

�



random set X it can be shown that F is continuously di�erentiable� Section � contains some remarks

on the estimation of FB by a Kaplan�Meier type estimator� Some comments are collected in Section

��

� Preliminaries

Henceforth let B be a �xed� compact set in Rk called the test set � Write rB � frb 
 b � Bg for the

scalar dilation of B by r � R� and for x � Rk let

Bx � fx� b 
 b � Bg

be the translation of B by x�

De�nition � For x� y � Rk de�ne

�B�x� y� � inffr � � 
 y � �rB�xg

to be the �distance� from x to y with respect to the test set B� For A � R
k de�ne

�B�x�A� � inff�B�x� a� 
 a � Ag
� inffr � � 
 �rB�x �A �� �g

the shortest �distance� from x to A�

For example if B is the unit ball in Rk then �B�x� y� � jjx�yjj and �B�x�A� is the shortest Euclidean
distance from x to A� If B is convex� symmetric about the origin �� and contains a neighbourhood

of �� then �B is a metric equivalent to the Euclidean metric� and B is its unit ball� The concept of

the generalised distance �B�x�X� is illustrated in Figure ��

De�nition � Let X be a stationary random set in R
k � De�ne the coverage fraction

pX � Pf� � Xg

and the �rst contact distribution

FB�r� � Pf�B��� X� 	 rg� r � ��

By Fubini �Robbins� Theorem� see Kendall and Moran ����� pp� ��������

pX �
E jX � Zjk

jZjk
for any measurable set Z � R

k with jZjk � � where j
jk denotes Lebesgue volume�The following

constructions are useful in interpreting FB �

�
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Figure �
 Drawings which illustrate the concept of the generalised distance �B�x�X�� �a� spherical

case� �b� linear case� �c� hexagonal case� �d� triangular case� �e� elliptical case�

De�nition � Let A�B � R
k � Write

�A � ����A � f�a 
 a � Ag
for the re�ection of A through the origin� De�ne Minkowski addition � and subtraction � by

A�B � fx� y 
 x � A y � Bg
A�B � �Ac �B�

c

where c denotes complement�

It can be shown that� if A � R
k is closed�

fx � Rk 
 �B�x�A� 	 rg � A� r �B�

fx � Rk 
 �B�x�A
c� � rg � A� r �B�

It follows by Robbins� Theorem as for pX that

FB�r� � Pf�B��� X� 	 rg � Pf� � X � r �Bg � E
��Z � �X � r �B

���
k

jZjk
� ���

�



In the important spherical case with B � B��� ��� where B�x�� r� denotes the closed Euclidean

ball in R
k centered at x� � R

k and with radius r � R� � we have �B � B and use the abbreviated

notation A�r� A�r and F �r� for A� r �B�A� r �B and FB � respectively�

A popular and convenient model of random sets is the Boolean model� It is used as a basic model

for amorphous structure in many applications� see Stoyan et al� ���� and references therein� Let ��

be a stationary Poisson point process in the Euclidean space Rk with intensity �� and let X�� X�� � � �

be i�i�d� random compact sets independent of ��� Then

X � xi����xi �Xi�

is said to be a Boolean model� As shown in Matheron ����� the capacity functional of the Boolean

model X can be evaluated as

T �K� � �� exp
���E jX� � �Kjk

�
�

For the Boolean model described above the expression for FB becomes analytically tractable if

B is convex and X� is taken to be convex with probability one� and X� has a distribution invariant

with respect to rotations around the origin� It can namely be shown by the generalized Steiner

formula �Stoyan et al�� ��� pp� ���� that

FB�r� � �� exp

�
� �

�k

kX
d��

�
k

d

�
rdE �Wd�X���Wk�d�B�

	
� ���

where �k is the volume of the unit ball in Rk and Wd denotes the d�th Minkowski functional�

From ��� it is seen that if X is a Boolean model built up with a�s� convex Xi�s� then FB is

absolutely continuous� continuously di�erentiable and has the hazard rate

�B�r� � � d

dr
log��� FB�r�� �

fB�r�

�� FB�r�

�
�

�k

kX
d��

d

�
k

d

�
rd��E �Wd�X���Wk�d�B��

The aim of this paper is to study similar properties for a general stationary random set�

� Regularity properties of FB

The aim of this section is to prove FB is absolutely continuous� We shall use Hk�� and j 
 jk�� to

denote k � � dimensional surface area �Hausdor�� measure�

Theorem � Let X be a stationary random closed set and B a convex compact set containing a

neighbourhood of the origin� Then

�� the �rst contact distribution function FB for X is absolutely continuous for r � � and has an

atom at � of mass pX �

�



�� The density of FB equals

fB�r� � E

Z
W���X�r �B�

J��B�x�X��� Hk���dx� ���

for almost every r � � and any compact window W � R
k � with jW jk � ��

Later in the paper we base estimators of FB on the hazard rate� which from the result in Theorem

� and ��� is given by

�B�r� �
�

E jW n �X � r �B�jk
E

Z
W���X�r �B�

J��B�x�X��� Hk���dx�� ���

To prove Theorem � we use some basic techniques of geometric measure theory with special

emphasis on the coarea formula �see Federer ���� and Morgan ������ see also Simon ������

Hardt and Simon ������ and Lawrence and Gariepy ������ An intuitive explanation of the coarea

formula �Federer� ��� Theorem ������� Morgan� ���� ����� can be given as follows
 According to

Fubini�s Theorem the area of a two�dimensional set can be found by dividing the set into thin strips

parallel to one of the axes and integrating the areas of the strips� The coarea formula generalises

this idea� The strips are now determined by the level sets of some function f 
 Rk � R which may

be curved or even worse only Lipschitz instead of straight lines parallel to the axis� The Jacobian

of f is a corrective factor needed to capture the change in elementary area at each point of the level

sets� One should notice that we possibly get Jacobians of mappings to lower �or higher� dimensional

spaces� Therefore to apply the coarea formula we need a Lipschitzian property of the function

�B�
� A� 
 Rk � R� � and a lower bound on its Jacobian� which are given by Lemma � and �� below�

Lemma � Let B be a convex compact set in Rk containing a neighbourhood of the origin and choose

any u � � such that B��� u� � B� Then �B�
� A� 
 Rk � R� is Lipschitz with constant u��� for any

set A � R
k �

Proof Let x� y� z � Rk and de�ne

r � �B�x� y��

s � �B�y� z��

Then there exist br� bs � B such that

x� rbr � y

y � sbs � z�

Hence

x� �rbr � sbs� � z�

and

x� �r � s��
rbr
r � s

�
sbs
r � s

� � z�

�



It follows that

�B�x� z� 	 r � s � �B�x� y� � �B�y� z��

so �B�
� 
� 
 Rk � R
k � R� satis�es the triangle inequality� From this we get

j�B�x� y�� �B�z� y�j 	 maxf�B�x� z�� �B�z� x�g�

and from the choice of u � � such that B��� u� � B we get that

�B�x� y� 	 jjx� yjj
u

�

Now� if we �x y � Rk � then

j�B�x� y� � �B�z� y�j 	 maxf�B�x� z�� �B�z� x�g
	 jjx� zjj

u
�

Moreover

�B�x�A� � inf
a�A

�B�x� a�

	 inf
a�A

��B�x� z� � �B�z� a��

	 �B�x� z� � �B�z� A��

from which the Lipschitz property follows

j�B�x�A� � �B�z� A�j 	 jjx� zjj
u

�

�

Notice that� for example if A � fyg � R
	 and B is a unit cube� then �B�
� A� is not di�erentiable

along the diagonals of B but is di�erentiable at all other points� For any closed set A� �B�
� A� is

di�erentiable at almost every points by Lemma � and Rademachers Theorem �Federer� ��� ������

Morgan� ���� ����� If �B�
� A� is di�erentiable at x � Ac we de�ne the ��dimensional Jacobian

�Morgan� ���� ���� as

J��B�x�A� �
p
D��B�x�A�D��B�x�A��� ���

where D��B�x�A� � ���B�x�A�	�x�� ���� ��B�x�A�	�xk� is the gradient of �B�x�A� and � denotes

transpose�

Lemma � Let B be a convex compact set in Rk containing a neighbourhood of the origin and choose

any U � � such that B � B��� U�� Then for any closed set A � R
k �

J��B�x�A� � �

U
� �� for almost all x � Ac�

�



Proof Let us �rst de�ne

cv � supft � � 
 t
v

jvj � Bg� for v � Rk �

Assume t � �B�x�A� and z � A is chosen such that �B�x� z� � t� Then given x � Ac� we want to

show that for 
 	 jz � xj we have

�tB�x �

�

�� 


cz�xt

�
tB


x� 
w�

���

z �

�

�� 


cz�xt

�
tB


x� 
w�

���

where w � �z � x�	jz � xj� First notice that

t �
jz � xj
cz�x

� ���

To achieve ���� we want to prove that

b � B �
�
�� 


cz�xt

�
tb� x� 
w � �tB�x�

which is equivalent to �
�� 


cz�xt

�
b�




t
w � B�

Using ��� we get cz�x � jz � xj	t� Hence we want to prove�
�� 


jz � xj
�
b�




jz � xj �wcz�x� � B�

As b � B and wcz�x � B� we get for 
 	 jz�xj a convex combination of elements in B� so ��� holds�

Moreover taking b � wcz�x � B we get�
�� 


cz�xt

�
tb� x� 
w � z�

whereby ��� follows� By ��� and ���� we have for t and z de�ned as above

J��B�x�A� � k D��B�x�A� k� lim sup
y�x

j�B�y�A�� �B�x�A�j
jy � xj

� lim sup
���

j�B�x� 
w�A� � �B�x�A�j



� lim sup
���

jt� �
cz�x

� tj



�
�

cz�x
� �

U

� ��

�

�



Note that Lemma � and equation ��� imply that the boundary of X � r �B has �nite expected

measure in any window�

E jW � ��X � r �B�jk�� ��
for almost all r � �� This is not guaranteed for all r and so for example it is still possible that

�X may be a fractal with Hausdor� dimension greater than k � �� The theorem implies that these

exceptional r values form a set of measure zero�

The proof of Theorem � rests on the following application of geometric measure theory �Federer�

��� Morgan� �����

Lemma � Let Z � R
k be a measurable set with � � jZjk ��� B a convex compact set containing a

neighbourhood of the origin� and let A � R
k be any closed set� Then the function r �� jZ��A�r �B�jk

is nondecreasing� continuous and absolutely continuous with

jZ � �A� r �B�jk � jZ � Ajk �
Z r

�

Z
Z���A�s �B�

J��B�x�A�
��Hk���dx� ds� ��

In particular the integrand is measurable and integrable�

Proof The intuitive interpretation is as follows� The k�dimensional volume is broken into strips

de�ned by the level sets of �B�
� A� �equivalent to the boundaries of ��A � s �B�� � 	 s 	 r�� going

from �A to ��A� r �B��

Formally the function �B�
� A� 
 Rk � R� is Lipschitz by Lemma �� and hence a�e� di�erentiable

with positive ��dimensional Jacobian by Lemma ��

J��B�x�A� �k D��B�x�A� k� �� x � Ac�

Since Z is assumed measurable� we use the coarea formula �Federer� ��� Theorem ������� and the

observation that up to a null set ��A � s �B� � ���B �s� A�� where ���B �s� A� � fx � R
k 
 ��x�A� � sg

denotes a level set of �B�
� A�� to get

jZ � �A� r �B�jk � jZ � Ajk � jZ � ��A� r �B� nA�jk
� jZ � Ajk �

Z
Z

�fx � A� r �B nAg
J��B�x�A�

J��B�x�A�dx

� jZ � Ajk �
Z r

�

Z
Z���A�s �B�

J��B�x�A�
��Hk���dx� ds�

Monotonicity follows from ��� �

Proof of Theorem � As W is compact Lemma � gives a�s�

jW � �X � r �B�jk � jW �X jk �
Z r

�

Z
W���X�s �B�

J��B�x�X��� Hk���dx�ds�

Since the left side is integrable� Fubini�s theorem gives

E jW � �X � r �B�jk � E jW �X jk �
Z r

�

E

Z
W���X�s �B�

J��B�x�X��� Hk���dx�ds�





The conclusions follow using equation ���� �

In the rest of this subsection we record some stronger statements about the regularity of FB �

However� for this we need the following result about the uniform boundedness of jZ�����r �B�jk���
This proposition is a generalization of Lemma � in Baddeley and Gill ����� to the case of a general

convex body as test set�

Proposition � Let � be a locally �nite point process on Rk � Then for any compact set Z � R
k and

convex compact body B with u� U � � chosen such that B��� u� � B � B��� U��

jZ � ���� r �B�jk�� 	 k

ur
jZ � r �Bjk � kwk�Ur�k����Z � r �B� ����

where � denotes the cardinality of a set� and � denotes minimum�

Proof As the surface area of the boundary of a convex set is increasing with respect to set

inclusion and the additivity of the measure Hk��� the second term on the right of ���� follows since

k�k�Ur�
k�� � j�B��� Ur�jk��� i�e� the surface area of a ball circumscribing the expanded structuring

element r �B� For the �rst term� �x a realization of � and let xi� i � �� � � � �m be the almost surely

distinct points in � � �Z � r �B�� Now let Hi � �r �B�xi � i � �� ����m� and make the following disjoint

partioning of the union of boundaries mi���Hi in the following way

D� � �H�

Di � ��ij��Hc
j � � �Hi� i � �� ����m�

By noticing that Z�����r �B� � Z� �mi��Di�� the argument is as follows
 any line segment joining

xi to a point on the corresponding surface piece Di � Z is contained entirely within �r �B�xi since B

is convex� Moreover� two line segments joining xi to Di � Z and xj to Dj � Z� for i �� j� cannot

intersect according to the de�nition of Di� Hence the unions Fi of these segments are disjoint� so

the sum of the volumes jFijk is bounded by the volume of Z � r �B 


mX
i��

jFijk 	 jZ � r �Bjk� ����

Now to provide a bound on jDijk�� de�ne f 
 Rk � Sk�� by f�x� � x	jxj� where Sk�� denotes

the k � ��dimensional boundary of the unit sphere in R
k � The k�dimensional Jacobian of f is

found by representing the tangent space of Rk at x as the orthogonal sum T � H � V where

H � fy � R
k 
 x 
 y � �g is the hyperplane tangent at x to the sphere of radius jxj� centre �� and

V � frx 
 r � Rg is the ray from � through x� Take an orthonormal basis u�� ���� uk for T consisting

of an orthonormal basis u�� ���� uk�� for H and a unit vector in V � By taking directional derivatives

lim����f�x� 
uj�� f�x��	
 we �nd the di�erential of f at x has

Df�x��u�� � u�	jxj

��



���

Df�x��uk��� � uk��	jxj
Df�x��uk� � uk

i�e� Df�x� is a k�dimensional matrix with determinant �	jxjk��� So the Jacobian is Jkf�x� � jxj��k�
By the coarea formula we get for A � f�Fi � Z� � f�Di � Z�

jDi � Zjk�� �

Z
Di�Z

Hk���dx�

�

Z
A

Z
f���z��Di�Z

�Jkf�y��
��H��dy�Hk���dz�

�

Z
A

jf���z� �Di � Zjk��Hk���dz�

and

jFi � Zjk �

Z
Fi�Z

Hk���dx�

�

Z
A

Z
f���z��Fi�Z

�Jkf�y��
��H��dy�Hk���dz�

�
�

k

Z
A

jf���z� � Fi � Zjk�Hk���dz�

�
�

k

Z
A

jf���z� �Di � ZjkHk���dz��

� ur

k

Z
A

Hk���dz��

Hence

jFi � Zjk � u

k
rjDi � Zjk��� ����

Combining ���� and ���� gives

jZ � ���� r �B�jk��

	
mX
i��

jDi � Zjk�� 	 k

ur

mX
i��

jFi � Zjk 	 k

ur

mX
i��

jFijk

	 k

ur
jZ � r �Bjk�

�

Proposition � Let Z � R
k be any compact set� B a convex compact set containing a neighbourhood

of the origin and u� U � � chosen such that B��� u� � B � B��� U�� Then for any closed set AZ
Z���A�r �B�

J��B�x�A�Hk���dx� 	 U jZ � ��A� r �B�jk��

	 U	k

ur
jZ � r �Bjk� for a�e� r � ��

��



Proof The �rst inequality follows directly from Lemma �� For the second� let 
 � � be given�

Since A is compact there is a �nite set C � fx�� � � � � xng � A such that

sup
x�A

min
i
�B�xi� x� 	 
�

Equivalently A � C � 
 �B� Hence by monotonicity and semigroup properties of dilation �Matheron�

����

C � r �B � A� r �B � C � ��r � 
� �B�

for any r � �� Thus for r	 � r� � �

�A� r	 �B� n �A� r� �B� � �C � ��r	 � 
� �B�� n �C � r� �B�

giving

j��A� r	 �B� n �A� r� �B�� � Zjk 	 j�C � ��r	 � 
� �B�� n �C � r� �B�� � Zjk�
An application of Lemma � yieldsZ r�

r�

Z
Z���A�s �B�

J��B�x�A�
��Hk���dx�ds 	

Z r���

r�

Z
Z���C�s �B�

J��B�x�A�
��Hk���dx�ds�

Now use the fact that U�� 	 J��B�x�A� 	 u��� �which follows from Lemma � and ��� to getZ r�

r�

jZ � ��A� s �B�jk��ds 	
Z r�

r�

Z
Z���A�s �B�

J��B�x�A�
��Hk���dx�ds

	
Z r���

r�

Z
Z���C�s �B�

J��B�x�A�
��Hk���dx�ds

	 U

Z r���

r�

jZ � ��C � s �B�jk��ds�

Now apply Proposition � to bound the integrand on the right hand side by kU
su
jZ � s �Bjk� Since 
 is

arbitrary and s� jZ � s �Bjk is continuous and nondecreasing we getZ r�

r�

jZ � ��A� s �B�jk��ds 	 U

Z r�

r�

kU

us
jZ � s �Bjkds�

Since r� and r	 are arbitrary the conclusion follows from the Radon�Nikod�ym theorem� �

Proposition � If the map r �� R
Z���A�r �B�

J��B�x�A�
��Hk���dx� is a�s� continuous� then FB is

continuously di	erentiable�

For example� the condition is satis�ed by any point process or line segment process� or more gen�

erally when every realization of X is a locally �nite union of convex compact sets �e�g� a Boolean

model��

��



Proof Once the uniform bound in Proposition � is established� the result follows by invoking

the dominated convergence theorem� �

Remark � �The spherical case� Consider the spherical case� B � B��� ��� we have up to a null

set A�r � ���B ���� r�� A� and �B�
� A� is Lipschitz with constant �� hence almost everywhere di�er�

entiable� with Jacobian bounded by �� Under the conditions of Proposition � the Jacobian is a�s�

equal to �� and the density and hazard rate of F simpli�es to

f�r� � E jW � �X�rjk���

��r� �
�

E jW nX�rjk E jW � �X�rjk���

Remark � �Importance of the Jacobian� To emphasize the importance of the Jacobian in Lemma

� we consider the following simple example in R
	 � Let Z � B��� ��� A � f�g� and B � fx � R

	 


jjxjj� 	 �g� where jj 
 jj� is the L��norm� see Figure �� Then we get

jZ � �A� r �B�jk � �
p
�r�	 � �r	� � 	 r 	 ��

But if we set the Jacobian to � as in the spherical case shown above �Baddeley and Gill� ��� ���

then Z r

�

Z
Z���A�s �B�

H��dx�ds �

Z r

�

jZ � ��A� s �B�j�ds

�

Z r

�

�
p
�sds

� �
p
�r	� � 	 r 	 ��

This example is fairly innocuous in the sense that the error introduces only a constant factor
p
��

However� by e�g shifting B to make the origin eccentric� the Jacobian becomes non constant and

even more vital to be included�

Remark � �A simpli�ed expression of the Jacobian� Note that the Jacobian can be interpreted

as the rate of increase of X � r �B perpendicular to its boundary� see Baddeley ������ Using this

interpretation it is possible to derive a simpli�ed expression of the Jacobian J��B�x�X� along the

following sketch� Let hB 
 Sk�� � R� be the support function of B de�ned by

hB�u� � sup
b�B

u 
 b�

which geometrically is the distance from � to the supporting hyperplane in the direction normal to

u� Moreover let n�x� be the outward unit normal vector to ��X�r �B� at x when r � �B�x�X�� If we

approximate the boundary ��X�r �B� in a neighbourhood U of x by a line�plane normal to the vector

n�x�� then a simple sketch shows that the boundaries of X�r �B and X��r�dr� �B are approximately

��
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Figure �
 Illustration of a simple test set B centered at the origin�

parallel� and separated by a distance of approximately hB�n�x��dr� So U��X��r�dr� �B�n�X�r �B�

is approximately a slab of height hB�n�x��� and

J��B�x�X� � hB�n�x���

� Estimation of FB

The problem considered in this section is to estimate FB based on the observable data W �X � To

estimate FB it would be straightforward to suggest the empirical counterparts to ���� ���� and ����

but to determine �X � r �B� �W would require information outside W � which is unavailable�

We observe only X �W � and hence we know �B�x�X �W � rather than �B�x�X� for x � W �

The true distance �B�x�X� is in e�ect censored by the distance to the boundary �B�x� �W �� since

�B�x�X� � �B�x� �W � � �B�x�X �W � � �B�x� �W �� x �W� ����

The standard approach to this problem� see Cressie ���� Chapter ��� Stoyan et al� ���� pp�

��������� Serra ����� pp� �� ���� and Ripley ����� Chapter ��� is to restrict attention� when

estimating FB�r�� to those points x with �B�x� �W � � r� since for such points we have �B�x�X� 	 r

if and only if �B�x�X �W � 	 r� In geometrically terms

�X � r �B� � �W � r �B� � ��X �W �� r �B� � �W � r �B� ����

��



and the right�hand side is computable from data X �W � Now de�ne

bY �r� � j�W � r �B� n �X � r �B�jk
Y �r� � E bY �r��

Thus replacing Z by W � r �B in ���� ���� and ��� gives

fB�r� � E

Z
�W�r �B����X�r �B�

hB�n�x��
��Hk���dx��

�B�r� �
�

Y �r�
E

Z
�W�r �B����X�r �B�

hB�n�x��
��Hk���dx��

FB�r� �
E j�W � r �B� � �X � r �B�jk

jW � r �Bjk
����

A plug�in estimator for e�g� the hazard rate would then be

 �B�r� �
�bY �r�

Z
�W�r �B����X�r �B�

hB�n�x��
��Hk���dx� ����

Using ���� directly as an estimator for �B seems di!cult because of the Jacobian involved� However�

another application of the coarea formula gives the following expression for a possible estimatorb"B�r� of the integrated hazard rate of FB � where t�x� � �B�x�X �W � is the distance to X �W

and c�x� � �B�x� �W � the distance to the boundary of W

b"B�r� �

Z r

�

 �B�s�ds

�

Z r

�

Z
�
��

B
�s�

�ft�x� 	 c�x�g�ft�x� 	 rg
j�W � t�x� �B� n �X � t�x� �B�jk

hB�n�x��
��Hk���dx�ds

�

Z
W

�ft�x� 	 c�x�g�ft�x� 	 rg
j�W � t�x� �B� n �X � t�x� �B�jk

dx ����

Equation ���� and ���� then motivates the following de�nition

De�nition � Let X be a stationary random closed set� B convex compact and containing a neigh


bourhood of the origin� and letW � R
k be a compact set with jW jk � �� The Kaplan
Meier estimatorbF km of the �rst contact distribution function F of X� based on data W �X in W � is de�ned by

bF km�r� �

�� jW nX jk
jW jk exp

�
�
Z
W

�ft�x� 	 c�x�g�ft�x� 	 rg
j�W � t�x� �B� n �X � t�x� �B�jk

dx

�
� ����

The reduced sample estimator bF rs of the �rst contact distribution function F of X� based on data

X �W � is de�ned by bF rs�r� �
j�W � r �B� � �X � r �B�jk

jW � r �Bjk
� ���

��



We see immediately that bF rs is a pointwise unbiased estimator for F � but not necessarily a distri�

bution function� The expression used for the estimator de�ned in equation ��� is variously known

as �minus sampling	 �Miles� ���� or �border correction	 �Ripley� ����� But under the analogy

set up between distance and survival analysis Baddeley and Gill ���� ��� applied the notion

�reduced sample estimator	� which is standard terminology for an estimator of this type in censor�

ing�survival analysis� Equation ���� is sometimes said to be an instance of the �local knowledge

principle	 �Serra� ���� loc� cit��� To see that ���� deserves the ephithet Kaplan�Meier we suppose

for notational convenience that B is a sphere and get

bF km�r� � �� jW nX jk
jW jk exp

�
�
Z
W

�ft�x� 	 c�x�g�ft�x� 	 rg
jW�t�x� nX�t�x�jk

dx

�
� �� jW nX jk

jW jk exp

�
�
Z r

�

j��X�s� �W�sjk��
jW�s nX�sjk ds

�
����

Now observe that t�x� and c�x� are the distance to failure and the censoring distance� respectively�

and de�ne the �observed failure distance	

#t�x� � t�x� � c�x�
� �B�x�X �W � � �B�x� �W �

� �B�x�X� � �B�x� �W �

and the censoring indicator

d�x� � �ft�x� 	 c�x�g
� �f�B�x�X �W � 	 �B�x� �W �g
� �f�B�x�X� 	 �B�x� �W �g

where in each case the last line follows by ����� Then the integrand of ���� has denominator

jW�s nX�sjk � jfx �W 
 #t�x� � sgjk�

the measure of the set of points �at risk	 at distance s� and numerator

j��X�s� �W�sjk�� � jfx � W 
 #t�x� � s� d�x� � �gjk���

the measure of the set of points observed to �fail	 at distance s� Thus ���� is at least intuitively the

analogue of the usual Kaplan�Meier estimator for the continuum of data f�#t�x�� c�x�� 
 x �Wg�

Theorem � For a stationary random closed set X� B a convex compact set containing a neigh


bourhood of the origin� and W any compact set with jW jk � �� the statistic bF km is a distribution

function� It is continuous and absolutely continuous for r � �� with hazard rate

 ��r� �
�bY �r�

Z
�W�r �B����X�r �B�

hB�n�x��
��Hk���dx� ����

��



and an atom at � of mass bF km��� �
jW nX jk
jW jk �  �X � bF rs����

The estimator  ��r� of ��r� is ratio unbiased in the sense that

��r� �
E
R
�W�r �B����X�r �B� hB�n�x��

��Hk���dx�

Y �r�
�

Proof First we show that ���� is indeed the Kaplan�Meier estimator of F based on the continuum

of observations #t�x� � �B�x�X� � �B�x� �W �� d�x� � �f�B�x�X� 	 �B�x� �W �g� This is de�ned as

the product integral

bF km�r� � ��
r

�

��� d"�

of the measure b" de�ned by b"���� r�� � Z r

�

d bN�s�bY �s�

where

bN�r� � jfx �W 
 #t�x� 	 r� d�x� � �gjk
� jfx �W 
 �B�x�X� 	 �r � �B�x� �W ��gjkbY �r� � jfx �W 
 #t�x� � rgjk
� j�W � r �B� n �X � r �B�jk�

Rewrite bN�r� � jV � �X � r �B�jk where

V � fx � W 
 �B�x�X� 	 �B�x� �W �g� ����

Hence the integral de�ning b"���� r�� exists and is continuous as a function of r� and b" has density

���� for a�e� r � �� Hence the product integral exists� is continuous in r� and coincides with �����

The �ratio�unbiasedness	 of  � is a restatement of equation ���� �

Paralleling Proposition � is the fact that if r �� j�W � r �B� � ��X � r �B�jk�� is continuous �e�g�

if X �W is a �nite set of points or a �nite union of compact convex sets� then bF km is continuously

di�erentiable�

Given an image of a random structure it would be hard to calculate the integrals required in

De�nition � to estimate F � One would rather use a discretized sampling window W �

Let Z be the set of integers and Z� � f
m 
 m � Zg� 
 � �� Then Z
k
� � Z�� 
 
 
 � Z� forms a

lattice in R
k with mesh 
� Now� one can calculate for each lattice point zi in W �X the following

observations
 ti � �B�zi� X �W �� ci � �B�zi� �W � and #ti � ti � ci� di � �fti 	 cig� If the notion

of survival analysis is adopted this is a random censorship model� see e�g� Andersen et al� �����

��



ti� ci� #ti and di are normally called survival time� censoring time� censored survival time and edge

censoring indicator� respectively� Note the immediate di�erence from standard random censorship

models in survival analysis� that ti and ci are not independent for di�erent i�s� however a natural

possibility is to construct the discrete Kaplan�Meier estimator and look at the behaviour for the

lattice mesh tending to zero� Following the lines of Hansen et al� ���� Theorem �� we can prove

the following properties of the estimator�

Theorem � Construct the discrete Kaplan
Meier estimator

bF km
� �r� � ��

Y
s�r

�
�� �fi 
 eti � s� di � �g

�fi 
 eti � sg

�
����

and the discrete reduced sample estimator

bF rs
� �r� �

�fi 
 ti 	 r 	 cig
�fi 
 ci � rg � ����

and assume

j�V jk � �� ����

where V was de�ned in ����� Then as the lattice mesh 
 converges to zero� bF km
� �r� � bF km�r� andbF rs

� �r�� bF rs�r� for any r � R� where

R � inffr � � 
 �W � r �B� � �X � r �B� � �g�

Moreover the convergence is uniform on any compact interval in ��� R��

Proof As long as

j��W � r �B�jk � �� ����

j���W � r �B� � �X � r �B��jk � �� ����

and

j��V � �X � r �B��jk � �� ����

holds� the proof is identical to Hansen et al� ���� Theorem �� as we note the proof herein does

not depend on the structuring element B� We see that ���� and ���� are guaranteed for almost all

r by the coarea formula� Finally� ���� is guaranteed by ����� �

It is of practical interest to see under what conditions ���� is true� For example assume that B

is a convex structuring element� X is a Boolean model with convex grains and W is a convex ob�

servation window� Then ����$���� follows from Hansen et al� ���� Lemma �� as the proof of this

lemma only depends on the convexity of B� However by taking for instance any point process as

an underlying process for the Boolean model ���� is also true� so there seems to be room for more

generalisations�

��



� Final remarks

In this paper we have proved some regularity properties for the �rst contact distribution function

for test sets in the class of convex bodies� by means of the coarea formula� It is di!cult to use

Theorem � directly to derive analytical expressions for FB for di�erent random set models because

of the Jacobian involved� so in practice one would use Theorem � to compute estimates� The main

practical implication of Theorem � is the absolute continuity of FB � signifying that it is sensible

to estimate the density and hazard rate� Additionally Theorem � is the �rst step to derivation of

the Kaplan�Meier type estimator for FB which in some situations has shown to give more e!cient

estimators� see Baddeley and Gill ���� ��� and Hansen et al� �����
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