202 research outputs found

    Superparamagnetic iron oxide polyacrylic acid coated {\gamma}-Fe2O3 nanoparticles does not affect kidney function but causes acute effect on the cardiovascular function in healthy mice

    Full text link
    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated {\gamma}-Fe2O3 NPs (10 mg kg-1) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 and 7.41 in mice 0.5 h after injections of saline or NP, and did not change over the next 12h. In addition, the injections of NP did not affect arterial PCO2 or [HCO3-] either. Twenty-four and 96h after NP injections, the GFR averaged 11.0 and 13.0 ml min-1 g-1, respectively, values which were statistically comparable with controls (14.0 and 14.0 ml min-1 g-1). Mean arterial blood pressure (MAP) decreased 12-24h after NP injections (111 vs 123 min-1) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterise endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure.Comment: 21 pages, 12 figures, published in Toxicology and Applied Pharmacology 201

    The endogenous preproglucagon system is not essential for gut growth homeostasis in mice

    Get PDF
    Objective: The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. Methods: We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r), GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). Results: Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r−/− mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. Conclusion: The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent

    COPE-ICD: A randomised clinical trial studying the effects and meaning of a comprehensive rehabilitation programme for ICD recipients -design, intervention and population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing evidence exists that living with an ICD can lead to fear and avoidance behaviour including the avoidance of physical activity. It has been suggested that psychological stress can increase the risk of shock and predict death. Small studies have indicated a beneficial effect arising from exercise training and psychological intervention, therefore a large-scale rehabilitation programme was set up.</p> <p>Methods/Design</p> <p>A mixed methods embedded experimental design was chosen to include both quantitative and qualitative measures. A randomised clinical trial is its primary component. 196 patients (power-calculated) were block randomised to either a control group or intervention group at a single centre. The intervention consists of a 1-year psycho-educational component provided by two nurses and a 12-week exercise training component provided by two physiotherapists. Our hypothesis is that the COPE-ICD programme will reduce avoidance behaviour, sexual dysfunction and increase quality of life, increase physical capability, reduce the number of treatment-demanding arrhythmias, reduce mortality and acute re-hospitalisation, reduce sickness leading to absence from work and be cost-effective. A blinded investigator will perform all physical tests and data collection.</p> <p>Discussion</p> <p>Most participants are men (79%) with a mean age of 58 (range 20-85). Most ICD implantations are on primary prophylactic indication (66%). 44% is NYHA II. Mean walk capacity (6MWT) is 417 m. Mean perception of General Health (SF-36) is PCS 42.6 and MCS 47.1.</p> <p>A large-scale ICD rehabilitation trial including psycho-educational intervention and exercise training has been initiated and will report findings starting in 2011.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00569478">NCT00569478</a></p

    No effect of ablation of surfactant protein-D on acute cerebral infarction in mice

    Get PDF
    BACKGROUND: Crosstalk between the immune system in the brain and the periphery may contribute to the long-term outcome both in experimental and clinical stroke. Although, the immune defense collectin surfactant protein-D (SP-D) is best known for its role in pulmonary innate immunity, SP-D is also known to be involved in extrapulmonary modulation of inflammation in mice. We investigated whether SP-D affected cerebral ischemic infarction and ischemia-induced inflammatory responses in mice. METHODS: The effect of SP-D was studied by comparing the size of ischemic infarction and the inflammatory and astroglial responses in SP-D knock out (KO) and wild type (WT) mice subjected to permanent middle cerebral artery occlusion. SP-D mRNA production was assessed in isolated cerebral arteries and in the whole brain by PCR, and SP-D protein in normal appearing and ischemic human brain by immunohistochemistry. Changes in plasma SP-D and TNF were assessed by ELISA and proximity ligation assay, respectively. RESULTS: Infarct volumetric analysis showed that ablation of SP-D had no effect on ischemic infarction one and five days after induction of ischemia. Further, ablation of SP-D had no effect on the ischemia-induced increase in TNF mRNA production one day after induction of ischemia; however the TNF response to the ischemic insult was affected at five days. SP-D mRNA was not detected in parenchymal brain cells in either naïve mice or in mice subjected to focal cerebral ischemia. However, SP-D mRNA was detected in middle cerebral artery cells in WT mice and SP-D protein in vascular cells both in normal appearing and ischemic human brain tissue. Measurements of the levels of SP-D and TNF in plasma in mice suggested that levels were unaffected by the ischemic insult. Microglial-leukocyte and astroglial responses were comparable in SP-D KO and WT mice. CONCLUSIONS: SP-D synthesis in middle cerebral artery cells is consistent with SP-D conceivably leaking into the infarcted area and affecting local cytokine production. However, there was no SP-D synthesis in parenchymal brain cells and ablation of SP-D had no effect on ischemic cerebral infarction

    Vascular cognitive impairment linked to brain endothelium inflammation in early stages of heart failure in mice

    Get PDF
    Background Although advanced heart failure ( HF ) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Methods and Results Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte‐specific overexpression of G‐αq*44 protein were studied before the end‐stage HF , at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6‐ to 10‐month‐old but not in 3‐month‐old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood‐brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E‐selectin immunoreactivity, which was accompanied by increased amyloid‐β 1‐42 accumulation in piriform cortex and increased cortical oxidative stress (8‐ OH dG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO ‐dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3‐ to 10‐month‐old Tgαq*44 mice, but it was not associated with increased platelet‐dependent thrombogenicity. Conclusions We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. </jats:sec

    Changed activation, oxygenation, and pain response of chronically painful muscles to repetitive work after training interventions: a randomized controlled trial

    Get PDF
    The aim of this randomized controlled trial was to assess changes in myalgic trapezius activation, muscle oxygenation, and pain intensity during repetitive and stressful work tasks in response to 10 weeks of training. In total, 39 women with a clinical diagnosis of trapezius myalgia were randomly assigned to: (1) general fitness training performed as leg-bicycling (GFT); (2) specific strength training of the neck/shoulder muscles (SST) or (3) reference intervention without physical exercise. Electromyographic activity (EMG), tissue oxygenation (near infrared spectroscopy), and pain intensity were measured in trapezius during pegboard and stress tasks before and after the intervention period. During the pegboard task, GFT improved trapezius oxygenation from a relative decrease of −0.83 ± 1.48 μM to an increase of 0.05 ± 1.32 μM, and decreased pain development by 43%, but did not affect resting levels of pain. SST lowered the relative EMG amplitude by 36%, and decreased pain during resting and working conditions by 52 and 38%, respectively, without affecting trapezius oxygenation. In conclusion, GFT performed as leg-bicycling decreased pain development during repetitive work tasks, possibly due to improved oxygenation of the painful muscles. SST lowered the overall level of pain both during rest and work, possibly due to a lowered relative exposure as evidenced by a lowered relative EMG. The results demonstrate differential adaptive mechanisms of contrasting physical exercise interventions on chronic muscle pain at rest and during repetitive work tasks
    corecore