1,968 research outputs found
Customary farm rental arrangements (1999)
Landowners and tenants can choose from several different types of rental arrangements. They can choose cash, crop-share, livestock-share, or flexible-cash arrangements. The landowner also has the option of hiring custom operators for the field work or operating directly with hired labor. This guide focuses on development of an equitable crop-share lease.Revised 11/99/5M
Gaussian transfer functions for multi-field volume visualization
Journal ArticleVolume rendering is a flexible technique for visualizing dense 3D volumetric datasets. A central element of volume rendering is the conversion between data values and observable quantities such as color and opacity. This process is usually realized through the use of transfer functions that are precomputed and stored in lookup tables. For multidimensional transfer functions applied to multivariate data, these lookup tables become prohibitively large. We propose the direct evaluation of a particular type of transfer functions based on a sum of Gaussians. Because of their simple form (in terms of number of parameters), these functions and their analytic integrals along line segments can be evaluated efficiently on current graphics hardware, obviating the need for precomputed lookup tables. We have adopted these transfer functions because they are well suited for classification based on a unique combination of multiple data values that localize features in the transfer function domain. We apply this technique to the visualization of several multivariate datasets (CT, cryosection) that are difficult to classify and render accurately at interactive rates using traditional approaches
Model for volume lighting and modeling
Journal ArticleAbstract-Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. For many volumes, homogeneous regions pose problems for typical gradient-based surface shading. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects that incorporates volumetric shadows, an approximation to phase functions, an approximation to forward scattering, and chromatic attenuation that provides the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for both real and synthetic volumetric data
Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets
Journal ArticleMost direct volume renderings produced today employ one-dimensional transfer functions, which assign color and opacity to the volume based solely on the single scalar quantity which comprises the dataset. Though they have not received widespread attention, multi-dimensional transfer functions are a very effective way to extract specific material boundaries and convey subtle surface properties
Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets
Journal ArticleMost direct volume renderings produced today employ onedimensional transfer functions, which assign color and opacity to the volume based solely on the single scalar quantity which comprises the dataset. Though they have not received widespread attention, multi-dimensional transfer functions are a very effective way to extract specific material boundaries and convey subtle surface properties. However, identifying good transfer functions is difficult enough in one dimension, let alone two or three dimensions. This paper demonstrates an important class of three-dimensional transfer functions for scalar data (based on data value, gradient magnitude, and a second directional derivative), and describes a set of direct manipulation widgets which make specifying such transfer functions intuitive and convenient. We also describe how to use modern graphics hardware to interactively render with multi-dimensional transfer functions. The transfer functions, widgets, and hardware combine to form a powerful system for interactive volume exploration
Interactive translucent volume rendering and procedural modeling
Journal ArticleDirect volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volume metric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data
Volume rendering multivariate data to visualize meteorological simulations: a case study
Journal ArticleHigh resolution computational weather models are becoming increasing complex. However, the analysis of these models has not benefited from recent advancements in volume visualization. This case study applies the ideas and techniques from multi-dimensional transfer function based volume rendering to the multivariate weather simulations. The specific goal of identifying frontal zones is addressed. By combining temperature and humidity as a multivariate field, the frontal zones are more readily identified thereby assisting the meteorologists in their analysis tasks
Multidimensional transfer functions for interactive volume rendering
Journal ArticleAbstract-Most direct volume renderings produced today employ one-dimensional transfer functions which assign color and opacity to the volume based solely on the single scalar quantity which comprises the data set. Though they have not received widespread attention, multidimensional transfer functions are a very effective way to extract materials and their boundaries for both scalar and multivariate data. However, identifying good transfer functions is difficult enough in one dimension, let alone two or three dimensions. This paper demonstrates an important class of three-dimensional transfer functions for scalar data, and describes the application of multidimensional transfer functions to multivariate data. We present a set of direct manipulation widgets that make specifying such transfer functions intuitive and convenient. We also describe how to use modern graphics hardware to both interactively render with multidimensional transfer functions and to provide interactive shadows for volumes. The transfer functions, widgets, and hardware combine to form a powerful system for interactive volume exploration
Continued Water-Based Phase Change Material Heat Exchanger Development
In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two fullscale, Orion sized waterbased PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's
The demand for executive skills
We use a unique corpus of job descriptions for C-suite positions to document skills requirements in top managerial occupations across a large sample of firms. A novel algorithm maps the text of each executive search into six separate skill clusters reflecting cognitive, interpersonal, and operational dimensions. The data show an increasing relevance of social skills in top managerial occupations, and a greater emphasis on social skills in larger and more information intensive organizations. The results suggest the need for training, search and governance mechanisms able to facilitate the match between firms and top executives along multiple and imperfectly observable skills
- …