24,872 research outputs found
Flow angle sensor and readout system
Sensor determines fluid flow angles by means of a simple vane that positions itself in the direction of the flow. The vane rotates a small light-reflecting disc as it moves while the readout system uses two cyclically polarized light beams
Millivolt signal limiter
Low-voltage limiter circuit suppresses the output of platinum probes at temperatures beyond their operating range. The limiter circuit comprises an operational amplifier with a dual feedback loop. The signal limiter is useful in low-voltage instrumentation circuits normally operable or set for cryogenic temperatures
Electronic high pass filter
Ultra accurate filter is used with static type pressure transducers where it is desirable to extract low frequency dynamic signals from combined static and dynamic signal. System can be calibrated at any time with dc voltages
Low level signal limiter
A limiting circuit is described which prevents a signal being supplied to a signal amplifier from exceeding a predetermined value. The circuit is designed to permit a signal voltage to be fed directly to a signal amplifier without passing through the operational amplifier and without being altered undesirably. When the signal level increases to the predetermined value, the summing point shifts from the input of the operational amplifier to the output of the limiting circuit
Glass transition in fullerenes: mode-coupling theory predictions
We report idealized mode-coupling theory results for the glass transition of
ensembles of model fullerenes interacting via phenomenological two-body
potentials. Transition lines are found for C60, C70 and C96 in the
temperature-density plane. We argue that the observed glass-transition behavior
is indicative of kinetic arrest that is strongly driven by the inter-particle
attraction in addition to excluded-volume repulsion. In this respect, these
systems differ from most standard glass-forming liquids. They feature arrest
that occurs at lower densities and that is stronger than would be expected for
repulsion-dominated hard-sphere-like or Lennard-Jones-like systems. The
influence of attraction increases with increasing the number of carbon atoms
per molecule. However, unrealistically large fullerenes would be needed to
yield behavior reminiscent of recently investigated model colloids with strong
short-ranged attraction (glass-glass transitions and logarithmic decay of
time-correlation functions).Comment: 10 pages, 5 figure
Normal ground state of dense relativistic matter in a magnetic field
The properties of the ground state of relativistic matter in a magnetic field
are examined within the framework of a Nambu-Jona-Lasinio model. The main
emphasis of this study is the normal ground state, which is realized at
sufficiently high temperatures and/or sufficiently large chemical potentials.
In contrast to the vacuum state, which is characterized by the magnetic
catalysis of chiral symmetry breaking, the normal state is accompanied by the
dynamical generation of the chiral shift parameter . In the chiral
limit, the value of determines a relative shift of the longitudinal
momenta (along the direction of the magnetic field) in the dispersion relations
of opposite chirality fermions. We argue that the chirality remains a good
approximate quantum number even for massive fermions in the vicinity of the
Fermi surface and, therefore, the chiral shift is expected to play an important
role in many types of cold dense relativistic matter, relevant for applications
in compact stars. The qualitative implications of the revealed structure of the
normal ground state on the physics of protoneutron stars are discussed. A
noticeable feature of the parameter is that it is insensitive to
temperature when , where is the chemical potential, and
{\it increases} with temperature for . The latter implies that the
chiral shift parameter is also generated in the regime relevant for heavy ion
collisions.Comment: 28 pages, 6 figures; v2: title changed in journa
Structure Functions and Pair Correlations of the Quark-Gluon Plasma
Recent experiments at RHIC and theoretical considerations indicate that the
quark-gluon plasma, present in the fireball of relativistic heavy-ion
collisions, might be in a liquid phase. The liquid state can be identified by
characteristic correlation and structure functions. Here definitions of the
structure functions and pair correlations of the quark-gluon plasma are
presented as well as perturbative results. These definitions might be useful
for verifying the quark-gluon-plasma liquid in QCD lattice calculations.Comment: 9 pages, 1 figure, revised version (new remark on the coupling
parameter on page 2), to be published in Phys. Rev.
Effect of mixing and spatial dimension on the glass transition
We study the influence of composition changes on the glass transition of
binary hard disc and hard sphere mixtures in the framework of mode coupling
theory. We derive a general expression for the slope of a glass transition
line. Applied to the binary mixture in the low concentration limits, this new
method allows a fast prediction of some properties of the glass transition
lines. The glass transition diagram we find for binary hard discs strongly
resembles the random close packing diagram. Compared to 3D from previous
studies, the extension of the glass regime due to mixing is much more
pronounced in 2D where plasticization only sets in at larger size disparities.
For small size disparities we find a stabilization of the glass phase quadratic
in the deviation of the size disparity from unity.Comment: 13 pages, 8 figures, Phys. Rev. E (in print
Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom-Rowlinson model
We propose a systematic coarse-grained representation of block copolymers,
whereby each block is reduced to a single ``soft blob'' and effective intra- as
well as intermolecular interactions act between centres of mass of the blocks.
The coarse-graining approach is applied to simple athermal lattice models of
symmetric AB diblock copolymers, in particular to a Widom-Rowlinson-like model
where blocks of the same species behave as ideal polymers (i.e. freely
interpenetrate), while blocks of opposite species are mutually avoiding walks.
This incompatibility drives microphase separation for copolymer solutions in
the semi-dilute regime. An appropriate, consistent inversion procedure is used
to extract effective inter- and intramolecular potentials from Monte Carlo
results for the pair distribution functions of the block centres of mass in the
infinite dilution limit.Comment: To be published in mol.phys(2005
Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study
The structure of a molecular liquid, in both the nematic liquid crystalline
and isotropic phases, around a cylindrical macroparticle, is studied using
density functional theory. In the nematic phase the structure of the fluid is
highly anisotropic with respect to the director, in agreement with results from
simulation and phenomenological theories. On going into the isotropic phase the
structure becomes rotationally invariant around the macroparticle with an
oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.
- …