24,872 research outputs found

    Flow angle sensor and readout system

    Get PDF
    Sensor determines fluid flow angles by means of a simple vane that positions itself in the direction of the flow. The vane rotates a small light-reflecting disc as it moves while the readout system uses two cyclically polarized light beams

    Millivolt signal limiter

    Get PDF
    Low-voltage limiter circuit suppresses the output of platinum probes at temperatures beyond their operating range. The limiter circuit comprises an operational amplifier with a dual feedback loop. The signal limiter is useful in low-voltage instrumentation circuits normally operable or set for cryogenic temperatures

    Electronic high pass filter

    Get PDF
    Ultra accurate filter is used with static type pressure transducers where it is desirable to extract low frequency dynamic signals from combined static and dynamic signal. System can be calibrated at any time with dc voltages

    Low level signal limiter

    Get PDF
    A limiting circuit is described which prevents a signal being supplied to a signal amplifier from exceeding a predetermined value. The circuit is designed to permit a signal voltage to be fed directly to a signal amplifier without passing through the operational amplifier and without being altered undesirably. When the signal level increases to the predetermined value, the summing point shifts from the input of the operational amplifier to the output of the limiting circuit

    Glass transition in fullerenes: mode-coupling theory predictions

    Get PDF
    We report idealized mode-coupling theory results for the glass transition of ensembles of model fullerenes interacting via phenomenological two-body potentials. Transition lines are found for C60, C70 and C96 in the temperature-density plane. We argue that the observed glass-transition behavior is indicative of kinetic arrest that is strongly driven by the inter-particle attraction in addition to excluded-volume repulsion. In this respect, these systems differ from most standard glass-forming liquids. They feature arrest that occurs at lower densities and that is stronger than would be expected for repulsion-dominated hard-sphere-like or Lennard-Jones-like systems. The influence of attraction increases with increasing the number of carbon atoms per molecule. However, unrealistically large fullerenes would be needed to yield behavior reminiscent of recently investigated model colloids with strong short-ranged attraction (glass-glass transitions and logarithmic decay of time-correlation functions).Comment: 10 pages, 5 figure

    Normal ground state of dense relativistic matter in a magnetic field

    Full text link
    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ\Delta. In the chiral limit, the value of Δ\Delta determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ\Delta parameter is that it is insensitive to temperature when T≪μ0T \ll \mu_0, where μ0\mu_0 is the chemical potential, and {\it increases} with temperature for T>μ0T > \mu_0. The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.Comment: 28 pages, 6 figures; v2: title changed in journa

    Structure Functions and Pair Correlations of the Quark-Gluon Plasma

    Full text link
    Recent experiments at RHIC and theoretical considerations indicate that the quark-gluon plasma, present in the fireball of relativistic heavy-ion collisions, might be in a liquid phase. The liquid state can be identified by characteristic correlation and structure functions. Here definitions of the structure functions and pair correlations of the quark-gluon plasma are presented as well as perturbative results. These definitions might be useful for verifying the quark-gluon-plasma liquid in QCD lattice calculations.Comment: 9 pages, 1 figure, revised version (new remark on the coupling parameter on page 2), to be published in Phys. Rev.

    Effect of mixing and spatial dimension on the glass transition

    Full text link
    We study the influence of composition changes on the glass transition of binary hard disc and hard sphere mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass transition line. Applied to the binary mixture in the low concentration limits, this new method allows a fast prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard discs strongly resembles the random close packing diagram. Compared to 3D from previous studies, the extension of the glass regime due to mixing is much more pronounced in 2D where plasticization only sets in at larger size disparities. For small size disparities we find a stabilization of the glass phase quadratic in the deviation of the size disparity from unity.Comment: 13 pages, 8 figures, Phys. Rev. E (in print

    Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom-Rowlinson model

    Full text link
    We propose a systematic coarse-grained representation of block copolymers, whereby each block is reduced to a single ``soft blob'' and effective intra- as well as intermolecular interactions act between centres of mass of the blocks. The coarse-graining approach is applied to simple athermal lattice models of symmetric AB diblock copolymers, in particular to a Widom-Rowlinson-like model where blocks of the same species behave as ideal polymers (i.e. freely interpenetrate), while blocks of opposite species are mutually avoiding walks. This incompatibility drives microphase separation for copolymer solutions in the semi-dilute regime. An appropriate, consistent inversion procedure is used to extract effective inter- and intramolecular potentials from Monte Carlo results for the pair distribution functions of the block centres of mass in the infinite dilution limit.Comment: To be published in mol.phys(2005

    Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study

    Full text link
    The structure of a molecular liquid, in both the nematic liquid crystalline and isotropic phases, around a cylindrical macroparticle, is studied using density functional theory. In the nematic phase the structure of the fluid is highly anisotropic with respect to the director, in agreement with results from simulation and phenomenological theories. On going into the isotropic phase the structure becomes rotationally invariant around the macroparticle with an oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.
    • …
    corecore