5,463 research outputs found

    Relationship Between the Foveal Avascular Zone and Foveal Pit Morphology

    Get PDF
    Purpose.To assess the relationship between foveal pit morphology and size of the foveal avascular zone (FAZ). Methods. Forty-two subjects were recruited. Volumetric images of the macula were obtained using spectral domain optical coherence tomography. Images of the FAZ were obtained using either a modified fundus camera or an adaptive optics scanning light ophthalmoscope. Foveal pit metrics (depth, diameter, slope, volume, and area) were automatically extracted from retinal thickness data, whereas the FAZ was manually segmented by two observers to extract estimates of FAZ diameter and area. Results. Consistent with previous reports, the authors observed significant variation in foveal pit morphology. The average foveal pit volume was 0.081 mm3 (range, 0.022 to 0.190 mm3). The size of the FAZ was also highly variable between persons, with FAZ area ranging from 0.05 to 1.05 mm2 and FAZ diameter ranging from 0.20 to 1.08 mm. FAZ area was significantly correlated with foveal pit area, depth, and volume; deeper and broader foveal pits were associated with larger FAZs. Conclusions. Although these results are consistent with predictions from existing models of foveal development, more work is needed to confirm the developmental link between the size of the FAZ and the degree of foveal pit excavation. In addition, more work is needed to understand the relationship between these and other anatomic features of the human foveal region, including peak cone density, rod-free zone diameter, and Henle fiber layer

    Quantum Separability and Entanglement Detection via Entanglement-Witness Search and Global Optimization

    Full text link
    We focus on determining the separability of an unknown bipartite quantum state ρ\rho by invoking a sufficiently large subset of all possible entanglement witnesses given the expected value of each element of a set of mutually orthogonal observables. We review the concept of an entanglement witness from the geometrical point of view and use this geometry to show that the set of separable states is not a polytope and to characterize the class of entanglement witnesses (observables) that detect entangled states on opposite sides of the set of separable states. All this serves to motivate a classical algorithm which, given the expected values of a subset of an orthogonal basis of observables of an otherwise unknown quantum state, searches for an entanglement witness in the span of the subset of observables. The idea of such an algorithm, which is an efficient reduction of the quantum separability problem to a global optimization problem, was introduced in PRA 70 060303(R), where it was shown to be an improvement on the naive approach for the quantum separability problem (exhaustive search for a decomposition of the given state into a convex combination of separable states). The last section of the paper discusses in more generality such algorithms, which, in our case, assume a subroutine that computes the global maximum of a real function of several variables. Despite this, we anticipate that such algorithms will perform sufficiently well on small instances that they will render a feasible test for separability in some cases of interest (e.g. in 3-by-3 dimensional systems)

    Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference

    Get PDF
    The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and—if present—macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads

    CMB photons shedding light on dark matter

    Full text link
    The annihilation or decay of Dark Matter (DM) particles could affect the thermal history of the universe and leave an observable signature in Cosmic Microwave Background (CMB) anisotropies. We update constraints on the annihilation rate of DM particles in the smooth cosmological background, using WMAP7 and recent small-scale CMB data. With a systematic analysis based on the Press-Schechter formalism, we also show that DM annihilation in halos at small redshift may explain entirely the reionization patterns observed in the CMB, under reasonable assumptions concerning the concentration and formation redshift of halos. We find that a mixed reionization model based on DM annihilation in halos as well as star formation at a redshift z~6.5 could simultaneously account for CMB observations and satisfy constraints inferred from the Gunn-Peterson effect. However, these models tend to reheat the inter-galactic medium (IGM) well above observational bounds: by including a realistic prior on the IGM temperature at low redshift, we find stronger cosmological bounds on the annihilation cross-section than with the CMB alone.Comment: 35 pages, 14 figures; version accepted in JCAP after minor revision

    Towards More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere

    Full text link
    Motivated by the recognition that variation in the optical transmission of the atmosphere is probably the main limitation to the precision of ground-based CCD measurements of celestial fluxes, we review the physical processes that attenuate the passage of light through the Earth's atmosphere. The next generation of astronomical surveys, such as PanSTARRS and LSST, will greatly benefit from dedicated apparatus to obtain atmospheric transmission data that can be associated with each survey image. We review and compare various approaches to this measurement problem, including photometry, spectroscopy, and LIDAR. In conjunction with careful measurements of instrumental throughput, atmospheric transmission measurements should allow next-generation imaging surveys to produce photometry of unprecedented precision. Our primary concerns are the real-time determination of aerosol scattering and absorption by water along the line of sight, both of which can vary over the course of a night's observations.Comment: 41 pages, 14 figures. Accepted PAS

    Asteroseismology of the Hyades red giant and planet host epsilon Tauri

    Get PDF
    Asteroseismic analysis of solar-like stars allows us to determine physical parameters such as stellar mass, with a higher precision compared to most other methods. Even in a well-studied cluster such as the Hyades, the masses of the red giant stars are not well known, and previous mass estimates are based on model calculations (isochrones). The four known red giants in the Hyades are assumed to be clump (core-helium-burning) stars based on their positions in colour-magnitude diagrams, however asteroseismology offers an opportunity to test this assumption. Using asteroseismic techniques combined with other methods, we aim to derive physical parameters and the evolutionary stage for the planet hosting star epsilon Tau, which is one of the four red giants located in the Hyades. We analysed time-series data from both ground and space to perform the asteroseismic analysis. By combining high signal-to-noise (S/N) radial-velocity data from the ground-based SONG network with continuous space-based data from the revised Kepler mission K2, we derive and characterize 27 individual oscillation modes for epsilon Tau, along with global oscillation parameters such as the large frequency separation and the ratio between the amplitude of the oscillations measured in radial velocity and intensity as a function of frequency. The latter has been measured previously for only two stars, the Sun and Procyon. Combining the seismic analysis with interferometric and spectroscopic measurements, we derive physical parameters for epsilon Tau, and discuss its evolutionary status.Comment: 13 pages, 13 figures, 4 tables, accepted for publication in Astronomy & Astrophysic

    Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters

    Full text link
    We place constraints on the average density (Omega_m) and clustering amplitude (sigma_8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct non-linear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w_p and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Omega_m or sigma_8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, even though this technique does not use abundance information. Using w_p and M/N alone, we find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data, these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All errors are 1-sigma. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap

    Shifting Diets of Lake Trout in Northeastern Lake Michigan

    Full text link
    Prey fish communities in Lake Michigan have been steadily changing, characterized by declines in both the quantity and quality of Alewife Alosa pseudoharengus. To evaluate concurrent changes in the diet of Lake Trout Salvelinus namaycush in northeastern Lake Michigan, we analyzed stomach contents of Lake Trout caught during gill‐net surveys and fishing tournaments from May through October 2016. We then compared the composition, on a wet‐weight basis, of 2016 diets with those previously described in a recent survey conducted in 2011. Overall, we found that Lake Trout diets in 2016 consisted mostly (94% by wet weight) of Alewives and Round Goby Neogobius melanostomus. Averaging across May through October, 61% of the Lake Trout diet consisted of Alewives. A clear seasonal shift was apparent: the diet was dominated by Round Goby (67%) during May–June, whereas Alewives dominated the diet (76%) during July–October. Seasonal dominance of Round Goby in spring Lake Trout diets has not been previously observed in northeastern Lake Michigan as Round Goby represented only 21% of the Lake Trout diet in spring of 2011. Diet composition of Lake Trout caught in gill nets did not significantly differ from diet composition of Lake Trout caught by anglers in either the May–June period or the July–October period. Although Lake Trout showed increased diet flexibility in 2016 compared with 2011, Alewives were still the predominant diet component during 2016, despite reduced Alewife biomass throughout Lake Michigan. Nonetheless, this further evidence of diet plasticity suggests that Lake Trout may be resilient to ongoing and future forage base changes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151367/1/nafm10318.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151367/2/nafm10318_am.pd

    Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces

    Full text link
    The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.Comment: Submitted to Langmui
    • 

    corecore