65 research outputs found

    Analysis of prehospital perimortem caesarean deliveries performed by Helicopter Emergency Medical Services in the Netherlands and recommendations for the future

    Get PDF
    Background: Prehospital perimortem caesarean delivery (PCD) is a rarely performed procedure. In this study, we aimed to examine all PCDs performed by the four Helicopter Emergency Medical Services in the Netherlands; to describe the procedures, outcomes, complications, and compliance with the reco

    Gate-induced decoupling of surface and bulk state properties in selectively-deposited Bi2_2Te3_3 nanoribbons

    Full text link
    Three-dimensional topological insulators (TIs) host helical Dirac surface states at the interface with a trivial insulator. In quasi-one-dimensional TI nanoribbon structures the wave function of surface charges extends phase-coherently along the perimeter of the nanoribbon, resulting in a quantization of transverse surface modes. Furthermore, as the inherent spin-momentum locking results in a Berry phase offset of π\pi of self-interfering charge carriers an energy gap within the surface state dispersion appears and all states become spin-degenerate. We investigate and compare the magnetic field dependent surface state dispersion in selectively deposited Bi2_2Te3_3 TI micro- and nanoribbon structures by analysing the gate voltage dependent magnetoconductance at cryogenic temperatures. While in wide microribbon devices the field effect mainly changes the amount of bulk charges close to the top surface we identify coherent transverse surface states along the perimeter of the nanoribbon devices responding to a change in top gate potential. We quantify the energetic spacing in between these quantized transverse subbands by using an electrostatic model that treats an initial difference in charge carrier densities on the top and bottom surface as well as remaining bulk charges. In the gate voltage dependent transconductance we find oscillations that change their relative phase by π\pi at half-integer values of the magnetic flux quantum applied coaxial to the nanoribbon, which is a signature for a magnetic flux dependent topological phase transition in narrow, selectively deposited TI nanoribbon devices.Comment: 11 pages, 5 figure

    In-plane magnetic field-driven symmetry breaking in topological insulator-based three-terminal junctions

    Get PDF
    Topological surface states of three-dimensional topological insulator nanoribbons and their distinct magnetoconductance properties are promising for topoelectronic applications and topological quantum computation. A crucial building block for nanoribbon-based circuits are three-terminal junctions. While the transport of topological surface states on a planar boundary is not directly affected by an in-plane magnetic field, the orbital effect cannot be neglected when the surface states are confined to the boundary of a nanoribbon geometry. Here, we report on the magnetotransport properties of such three-terminal junctions. We observe a dependence of the current on the in-plane magnetic field, with a distinct steering pattern of the surface state current towards a preferred output terminal for different magnetic field orientations. We demonstrate that this steering effect originates from the orbital effect, trapping the phase-coherent surface states in the different legs of the junction on opposite sides of the nanoribbon and breaking the left-right symmetry of the transmission across the junction. The reported magnetotransport properties demonstrate that an in-plane magnetic field is not only relevant but also very useful for the characterization and manipulation of transport in three-dimensional topological insulator nanoribbon-based junctions and circuits, acting as a topoelectric current switch.Comment: Main Text (8 pages, 5 figures) + Supplemental Material (13 pages, 10 figures

    Robotically driven construction of buildings: Exploring on-demand building components production

    Get PDF
    Robotically Driven Construction of Buildings (RDCB) is an exploration into design to production solutions for robotically driven construction of buildings initiated by the faculties of Civil Engineering and Architecture, TU Delft and Architecture, TU Eindhoven and implemented 2014 within the 3TU Lighthouse framework. The aim of was to involve the disciplines of architecture, robotics, materials science, and structural design in order to integrate knowledge from the individual disciplines and develop new numerically controlled manufacturing techniques and building-design optimisation methods for adding creative value to buildings in a cost-effective and sustainable way.RDCB builds up on expertise developed at Hyperbody with respect to applications of robotics in architecture and this paper presents the contribution of the Robotic Building team from Hyperbody, Faculty of Architecture, TU Delft to the RDCB project. The contribution is in line with Europe’s aim to improve material and energy efficiency of buildings and efficiency of construction processes. Robotically driven construction and customised building materials have the potential to realise this in a cost-effective way and at the same time reduce accidents and health hazards for workers in the building sector. In order to achieve this RDCB is distributing materials as needed and where needed. This requires exploration of a variety of techniques and implies working with customised materials and techniques while finding the best methods of applying materials in the logic of specific force flows or thermal dissipation patterns.RDCB advances multi- and trans-disciplinary knowledge in robotically driven construction by designing and engineering new building systems for the on-demand production of customisable building components (Bier, 2014). The main consideration is that in architecture and building construction the factory of the future employs building materials and components that can be on site robotically processed and assembled
    corecore