195 research outputs found

    An Overview of Methods in the Analysis of Dependent ordered catagorical Data: Assumptions and Implications

    Get PDF
    Subjective assessments of pain, quality of life, ability etc. measured by rating scales and questionnaires are common in clinical research. The resulting responses are categorical with an ordered structure and the statistical methods must take account of this type of data structure. In this paper we give an overview of methods for analysis of dependent ordered categorical data and a comparison of standard models and measures with nonparametric augmented rank measures proposed by Svensson. We focus on assumptions and issues behind model specifications and data as well as implications of the methods. First we summarise some fundamental models for categorical data and two main approaches for repeated ordinal data; marginal and cluster-specific models. We then describe models and measures for application in agreement studies and finally give a summary of the approach of Svensson. The paper concludes with a summary of important aspects.Dependent ordinal data; GEE; GLMM; Logit; modelling

    Comparison of methods in the analysis of dependent ordered catagorical data

    Get PDF
    Rating scales for outcome variables produce categorical data which are often ordered and measurements from rating scales are not standardized. The purpose of this study is to apply commonly used and novel methods for paired ordered categorical data to two data sets with different properties and to compare the results and the conditions for use of these models. The two applications consist of a data set of inter-rater reliability and a data set from a follow-up evaluation of patients. Standard measures of agreement and measures of association are used. Various loglinear models for paired categorical data using properties of quasi-independence and quasi-symmetry as well as logit models with a marginal modelling approach are used. A nonparametric method for ranking and analyzing paired ordered categorical data is also used. We show that a deeper insight when it comes to disagreement and change patterns may be reached using the nonparametric method and illustrate some problems with standard measures as well as parametric loglinear and logit models. In addition, the merits of the nonparametric method are illustrated.Agreement:ordinal data; ranking; reliability.rating scales

    Bonding Structures of ZrHx Thin Films by X-ray Spectroscopy

    Full text link
    The variation in local atomic structure and chemical bonding of ZrHx (x=0.15, 0.30, 1.16) magnetron sputtered thin films are investigated by Zr K-edge (1s) X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopies. A chemical shift of the Zr K-edge towards higher energy with increasing hydrogen content is observed due to charge-transfer and an ionic or polar covalent bonding component between the Zr 4d and the H 1s states with increasing valency for Zr. We find an increase in the Zr-Zr bond distance with increasing hydrogen content from 3.160 {\AA} in the hexagonal closest-packed metal (alpha-phase) to 3.395 {\AA} in the understoichiometric delta-ZrHx film (CaF2-type structure) with x=1.16 that largely resembles that of bulk delta-ZrH2. For yet lower hydrogen contents, the structures are mixed alpha and delta-phases, while sufficient hydrogen loading (x>1) yields a pure {\delta}-phase that is understoichiometric, but thermodynamically stable. The change in the hydrogen content and strain is discussed in relation to the corresponding change of bond lengths, hybridizations, and trends in electrical resistivity.Comment: 17 pages, 7 figure

    Electronic Properties and Bonding in ZrHx Thin Films Investigated by Valence-Band X-ray Photoelectron Spectroscopy

    Full text link
    The electronic structure and chemical bonding in reactively magnetron sputtered ZrHx (x=0.15, 0.30, 1.16) thin films with oxygen content as low as 0.2 at% are investigated by 4d valence band, shallow 4p core-level and 3d core-level X-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity towards the H 1s - Zr 4d hybridization region at about 6 eV below the Fermi level. For low hydrogen content (x=0.15, 0.30), the films consist of a superposition of hexagonal closest packed metal (alpha-phase)and understoichiometric delta-ZrHx (CaF2-type structure) phases, while for x=1.16, the film form single phase ZrHx that largely resembles that of stoichiometric delta-ZrH2 phase. We show that the cubic delta-ZrHx phase is metastable as thin film up to x=1.16 while for higher H-contents, the structure is predicted to be tetragonally distorted. For the investigated ZrH1.16 film, we find chemical shifts of 0.68 and 0.51 eV towards higher binding energies for the Zr 4p3/2 and 3d5/2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge-transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as function of hydrogen content is discussed in relation to the charge-transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.Comment: 11 pages, 6 figure

    Chemical Bonding in Epitaxial ZrB2 Studied by X-ray Spectroscopy

    Full text link
    The chemical bonding in an epitaxial ZrB2 film is investigated by Zr K-edge (1s) X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies and compared to the ZrB2 compound target from which the film was synthesized as well as a bulk {\alpha}-Zr reference. Quantitative analysis of X-ray Photoelectron Spectroscopy spectra reveals at the surface: ~5% O in the epitaxial ZrB2 film, ~19% O in the ZrB2 compound target and ~22% O in the bulk {\alpha}-Zr reference after completed sputter cleaning. For the ZrB2 compound target, X-ray diffraction (XRD) shows weak but visible -111, 111, and 220 peaks from monoclinic ZrO2 together with peaks from ZrB2 and where the intensity distribution for the ZrB2 peaks show a randomly oriented target material. For the bulk {\alpha}-Zr reference no peaks from any crystalline oxide were visible in the diffractogram recorded from the 0001-oriented metal. The Zr K-edge absorption from the two ZrB2 samples demonstrate more pronounced oscillations for the epitaxial ZrB2 film than in the bulk ZrB2 attributed to the high atomic ordering within the columns of the film. The XANES exhibits no pre-peak due to lack of p-d hybridization in ZrB2, but with a chemical shift towards higher energy of 4 eV in the film and 6 eV for the bulk compared to {\alpha}-Zr (17.993 keV) from the charge-transfer from Zr to B. The 2 eV larger shift in bulk ZrB2 material suggests higher oxygen content than in the epitaxial film, which is supported by XPS. In EXAFS, the modelled cell-edge in ZrB2 is slightly smaller in the thin film (a=3.165 {\AA}, c=3.520 {\AA}) in comparison to the bulk target material (a=3.175 {\AA}, c=3.540 {\AA}) while in hexagonal closest-packed metal ({\alpha}-phase, a=3.254 {\AA}, c=5.147 {\AA}).Comment: 15 pages, 5 Figures, 4 table

    Neurobiology of Sleep Disturbances in PTSD Patients and Traumatized Controls: MRI and SPECT Findings

    Get PDF
    OBJECTIVE: Sleep disturbances such as insomnia and nightmares are core components of post-traumatic stress disorder (PTSD), yet their neurobiological relationship is still largely unknown. We investigated brain alterations related to sleep disturbances in PTSD patients and controls by using both structural and functional neuroimaging techniques. METHOD: Thirty-nine subjects either developing (n = 21) or not developing (n = 18) PTSD underwent magnetic resonance imaging and a symptom-provocation protocol followed by the injection of 99mTc-hexamethylpropyleneamineoxime. Subjects were also tested with diagnostic and self-rating scales on the basis of which a Sleep Disturbances Score (SDS; i.e., amount of insomnia/nightmares) was computed. RESULTS: Correlations between SDS and gray matter volume (GMV)/regional cerebral blood flow (rCBF) were computed in the whole sample and separately in the PTSD and control groups. In the whole sample, higher sleep disturbances were associated with significantly reduced GMV in amygdala, hippocampus, anterior cingulate, and insula; increased rCBF in midbrain, precuneus, and insula; and decreased rCBF in anterior cingulate. This pattern was substantially confirmed in the PTSD group, but not in controls. CONCLUSION: Sleep disturbances are associated with GMV loss in anterior limbic/paralimbic, PTSD-sensitive structures and with functional alterations in regions implicated in rapid eye movement-sleep control, supporting the existence of a link between PTSD and sleep disturbance

    Reactive magnetron sputtering of tungsten target in krypton/trimethylboron atmosphere

    Full text link
    W-B-C films were deposited on Si(100) substrates held at elevated temperature by reactive sputtering from a W target in Kr/trimethylboron (TMB) plasmas. Quantitative analysis by X-ray photoelectron spectroscopy (XPS) shows that the films are W-rich between ~ 73 and ~ 93 at.% W. The highest metal content is detected in the film deposited with 1 sccm TMB. The C and B concentrations increase with increasing TMB flow to a maximum of ~18 and ~7 at.%, respectively, while the O content remains nearly constant at 2-3 at.%. Chemical bonding structure analysis performed after samples sputter-cleaning reveals C-W and B-W bonding and no detectable W-O bonds. During film growth with 5 sccm TMB and 500 oC or with 10 sccm TMB and 300-600 oC thin film X-ray diffraction shows the formation of cubic 100-oriented WC1-x with a possible solid solution of B. Lower flows and lower growth temperatures favor growth of W and W2C, respectively. Depositions at 700 and 800 oC result in the formation of WSi2 due to a reaction with the substrate. At 900 oC, XPS analysis shows ~96 at.% Si in the film due to Si interdiffusion. Scanning electron microscopy images reveal a fine-grained microstructure for the deposited WC1-x films. Nanoindentation gives hardness values in the range from ~23 to ~31 GPa and reduced elastic moduli between ~220 and 280 GPa in the films deposited at temperatures lower than 600 oC. At higher growth temperatures the hardness decreases by a factor of 3 to 4 following the formation of WSi2 at 700-800 oC and Si-rich surface at 900 oC.Comment: 14 pages, 8 figure

    Исследование нанопорошков, синтезированных методом электрического взрыва проводников из сплавов

    Get PDF
    Исходными данными к работе были данные анализов нанопорошков, полученных методом электрического взрыва проводника в газовых средах и условия их приготовления. Полученные образцы сплава меди и никеля исследовались методами термического анализа, рентгенофазового анализа, электронной микроскопии, распределения частиц по размерам, методом БЭТ и при помощи энергодисперсионного анализа.The initial data for the work were data from analyzes of nanopowders obtained by electric exploding a conductor in gaseous media and the conditions for their preparation. The obtained samples of copper and nickel alloy were investigated by thermal analysis, X-ray phase analysis, electron microscopy, particle size distribution, BET method, and energy-dispersive analysis
    corecore