8 research outputs found

    Orbital reflectometry

    Full text link
    The occupation of d-orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could thus far not be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft x-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of 3 % in the occupation of Ni e_g orbitals in adjacent atomic layers of a LaNiO3-LaAlO3 superlattice, in good agreement with ab-initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in d-electron materials

    Plasmonic Analog of Electromagnetically Induced Absorption Leads to Giant Thin Film Faraday Rotation of 14°

    No full text
    We demonstrate the realization of a new hybrid magnetoplasmonic thin film structure that resembles the classical optical analog of electromagnetically induced absorption. In transmission geometry our gold nanostructure embedded in an EuS film induces giant Faraday rotation of over 14° for a thickness of less than 200 nm and a magnetic field of 5 T at T=20  K. By varying the magnetic field from -5 to +5  T, a rotation tuning range of over 25° is realized. As we are only a factor of 3 away from the Faraday isolation requirement, our concept could lead to highly integrated, nonreciprocal photonic devices for light modulation, optical isolation, and optical magnetic field sensing

    The next twenty years

    No full text

    Electron-Beam-Induced Antiphase Boundary Reconstructions in a ZrO<sub>2</sub>‑LSMO Pillar-Matrix System

    No full text
    The availability of aberration correctors for the probe-forming lenses makes simultaneous modification and characterization of materials down to atomic scale inside a transmission electron microscopy (TEM) realizable. In this work, we report on the electron-beam-induced reconstructions of three types of antiphase boundaries (APBs) in a probe-aberration-corrected TEM. With the utilization of high-angle annular dark-field scanning transmission electron microscopy (STEM), annular bright-field STEM, and electron energy-loss spectroscopy, the motion of both heavy element Mn and light element O atomic columns under moderate electron beam irradiation are revealed at atomic resolution. Besides, Mn segregated in the APBs was observed to have reduced valence states which can be directly correlated with oxygen loss. Charge states of the APBs are finally discussed on the basis of these experimental results. This study provides support for the design of radiation-engineering solid-oxide fuel cell materials

    High-Temperature Thermoelectricity in LaNiO<sub>3</sub>–La<sub>2</sub>CuO<sub>4</sub> Heterostructures

    No full text
    Transition metal oxides exhibit a high potential for application in the field of electronic devices, energy storage, and energy conversion. The ability of building these types of materials by atomic layer-by-layer techniques provides a possibility to design novel systems with favored functionalities. In this study, by means of the atomic layer-by-layer oxide molecular beam epitaxy technique, we designed oxide heterostructures consisting of tetragonal K<sub>2</sub>NiF<sub>4</sub>-type insulating La<sub>2</sub>CuO<sub>4</sub> (LCO) and perovskite-type conductive metallic LaNiO<sub>3</sub> (LNO) layers with different thicknesses to assess the heterostructurethermoelectric propertyrelationship at high temperatures. We observed that the transport properties depend on the constituent layer thickness, interface intermixing, and oxygen-exchange dynamics in the LCO layers, which occurs at high temperatures. As the thickness of the individual layers was reduced, the electrical conductivity decreased and the sign of the Seebeck coefficient changed, revealing the contribution of the individual layers where possible interfacial contributions cannot be ruled out. High-resolution scanning transmission electron microscopy investigations showed that a substitutional solid solution of La<sub>2</sub>(CuNi)­O<sub>4</sub> was formed when the thickness of the constituent layers was decreased
    corecore