2,652 research outputs found

    Feasibility of Implementing Community Partnerships to Provide Diabetes Prevention Services to Youth

    Get PDF
    Type 2 diabetes (T2D) in youth has increased as a result of the obesity epidemic. Diabetes prevention programming is needed for youth, at risk for T2D, and their families. However, there is a lack of diabetes prevention services for this population. There is evidence for the benefit of lifestyle modification for decreasing diabetes risk, however there are barriers for youth to access these services in a traditional clinical setting. Our Youth Diabetes Prevention Clinic (YDPC) created partnerships within the community to increase access to diabetes prevention services for at risk youth. YDPC personnel approached community organizations who had the expertise and capacity to partner in needed areas. These partnerships allowed for the development and facilitation of a community-based diabetes prevention group. Youth and their families participated in a 12 week diabetes prevention group. We measured attendance and participant satisfaction with the program. Families attended an average of 5.1 sessions from January to October 2016. Participant satisfaction was collected five times. Physical activity was rated as “awesome” or “good” by 88% of the respondents. The nutrition activities were rated as “awesome” or “good” by 97% of respondents. Physicians and families express a desire for diabetes prevention services, however barriers make it difficult for families to fully participate. Creating partnerships within the community allows for increased access to diabetes prevention services for high-risk, underserved families

    Decoupling Graphene from SiC(0001) via Oxidation

    Full text link
    When epitaxial graphene layers are formed on SiC(0001), the first carbon layer (known as the "buffer layer"), while relatively easy to synthesize, does not have the desirable electrical properties of graphene. The conductivity is poor due to a disruption of the graphene pi-bands by covalent bonding to the SiC substrate. Here we show that it is possible to restore the graphene pi-bands by inserting a thin oxide layer between the buffer layer and SiC substrate using a low temperature, CMOS-compatible process that does not damage the graphene layer

    Codesigned Shared Decision-Making Diabetes Management Plan Tool for Adolescents With Type 1 Diabetes Mellitus and Their Parents: Prototype Development and Pilot Test

    Get PDF
    Background: Adolescents with type 1 diabetes mellitus have difficulty achieving optimal glycemic control, partly due to competing priorities that interfere with diabetes self-care. Often, significant diabetes-related family conflict occurs, and adolescents’ thoughts and feelings about diabetes management may be disregarded. Patient-centered diabetes outcomes may be better when adolescents feel engaged in the decision-making process. Objective: The objective of our study was to codesign a clinic intervention using shared decision making for addressing diabetes self-care with an adolescent patient and parent advisory board. Methods: The patient and parent advisory board consisted of 6 adolescents (teens) between the ages 12 and 18 years with type 1 diabetes mellitus and their parents recruited through our institution’s Pediatric Diabetes Program. Teens and parents provided informed consent and participated in 1 or both of 2 patient and parent advisory board sessions, lasting 3 to 4 hours each. Session 1 topics were (1) patient-centered outcomes related to quality of life, parent-teen shared diabetes management, and shared family experiences; and (2) implementation and acceptability of a patient-centered diabetes care plan intervention where shared decision making was used. We analyzed audio recordings, notes, and other materials to identify and extract ideas relevant to the development of a patient-centered diabetes management plan. These data were visually coded into similar themes. We used the information to develop a prototype for a diabetes management plan tool that we pilot tested during session 2. Results: Session 1 identified 6 principal patient-centered quality-of-life measurement domains: stress, fear and worry, mealtime struggles, assumptions and judgments, feeling abnormal, and conflict. We determined 2 objectives to be principally important for a diabetes management plan intervention: (1) focusing the intervention on diabetes distress and conflict resolution strategies, and (2) working toward a verbalized common goal. In session 2, we created the diabetes management plan tool according to these findings and will use it in a clinical trial with the aim of assisting with patient-centered goal setting. Conclusions: Patients with type 1 diabetes mellitus can be effectively engaged and involved in patient-centered research design. Teens with type 1 diabetes mellitus prioritize reducing family conflict and fitting into their social milieu over health outcomes at this time in their lives. It is important to acknowledge this when designing interventions to improve health outcomes in teens with type 1 diabetes mellitus

    Forever-Fit Summer Camp: The Impact of a 6-Week Summer Healthy Lifestyle Day Camp on Anthropometric, Cardiovascular, and Physical Fitness Measures in Youth With Obesity

    Get PDF
    Pediatric obesity is a public health concern with lifestyle intervention as the first-line treatment. Forever-Fit Summer Camp (FFSC) is a 6-week summer day program offering physical activity, nutrition education, and well-balanced meals to youth at low cost. The aim of the study was to assess the efficacy of this program that does not emphasize weight loss rather emphasizes healthy behaviors on body mass index, cardiovascular and physical fitness. Methods: The inclusion criteria were adolescents between 8 and 12 years and body mass index (BMI) ≥85th percentile. The data were collected at baseline and week 6 (wk-6) and was analyzed for 2013-2018 using paired-sample t tests. Results: The participants' (N = 179) average age was 10.6 ± 1.6 years with a majority of females (71%) and black race/ethnicity (70%). At wk-6, BMI and waist circumference decreased by 0.8 ± 0.7 kg/m2 and 1.0 ± 1.3 in, respectively. Resting heart rate, diastolic and systolic blood pressure decreased by 8.5 ± 11.0 bpm, 6.3 ± 8.8 mmHg, and 6.4 ± 10.1 mmHg, respectively. The number of pushups, curl-ups, and chair squats were higher by 5.8 ± 7.5, 6.7 ± 9.1, and 7.7 ± 8.5, respectively. Conclusion: The FFSC is efficacious for improving BMI, cardiovascular, and physical fitness in the short term. The effect of similar episodic efforts that implement healthy lifestyle modifications throughout the school year should be investigated

    Medium Energy Ion Scattering of Gr on SiC(0001) and Si(100)

    Get PDF
    Depth profiling of graphene with high-resolution ion beam analysis is a practical method for analysis of monolayer thicknesses of graphene. Not only is the energy resolution sufficient to resolve graphene from underlying SiC, but by use of isotope labeling it is possible to tag graphene generated from reacted ethylene. Furthermore, we are able to analyze graphene supported by oxidized Si(100) substrates, allowing the study of graphene films grown by chemical vapor deposition on metal and transfered to silicon. This introduces a powerful method to explore the fundamentals of graphene formation

    Investigating Gender Disparities in Internal Medicine Residency Awards

    Get PDF
    Background: Significant gender disparities persist in career advancement for physicians. Studies have highlighted the lack of female representation in awards from both academic institutions and professional societies; these awards play a role in promotions, making them a fundamental building block of success. Objectives: We aim to explore the gender breakdown among resident awards presented by several Internal Medicine residency programs across the United States in this pilot study. Our ultimate goals are to define disparities in award selection, determine what variables contribute to these disparities, and work to mitigate these variables. Methods/Research: We generated a survey in REDCap to collect retrospective data about resident award selection from academic Internal Medicine residency programs across the country. This survey gathered awards data from 2009-2019 and included variables such as gender breakdown of the program, gender of resident award recipients, and details about how awards are selected. Eight programs completed the survey; these programs were from six different states in various geographic regions. Overall 43.1 percent of residents were female. Across all residency programs and years, there were 51 distinct resident awards with 290 (39.7%) female winners. Of the 51 distinct awards, there were 10 which were awarded to female residents with the same or higher frequency as males; 6 of these mentioned words that have been differentially associated with women in medicine such as “ambulatory,” “community,” “compassion,” and “humanism.” In the 41 awards favoring males, there was only a single mention of the word “compassion,” and no mention of the others. Conclusions/Impact: This data shows a concerning disparity in gender of award winners. In the future we will collect data from more residency programs and perform a thorough investigation of selection mechanisms that may help mitigate bias in order to ultimately propose strategies to reduce these gender disparities.https://jdc.jefferson.edu/sexandgenderhealth/1007/thumbnail.jp

    Coherent control of the cooperative branching ratio for nuclear x-ray pumping

    Full text link
    Coherent control of nuclear pumping in a three level system driven by x-ray light is investigated. In single nuclei, the pumping performance is determined by the branching ratio of the excited state populated by the x-ray pulse. Our results are based on the observation that in ensembles of nuclei, cooperative excitation and decay leads to a greatly modified nuclear dynamics, which we characterize by a time-dependent cooperative branching ratio. We discuss prospects of steering the x-ray pumping by coherently controlling the cooperative decay. First, we study an ideal case with purely superradiant decay and perfect control of the cooperative emission. A numerical analysis of x-ray pumping in nuclear forward scattering with coherent control of the cooperative decay via externally applied magnetic fields is presented. Next, we provide an extended survey of nuclei suitable for our scheme, and propose proof-of-principle implementations already possible with typical M\"ossbauer nuclear systems such as 57Fe^{57}\mathrm{Fe}. Finally, we discuss the application of such control techniques to the population or depletion of long-lived nuclear states.Comment: 11 pages, 8 figures; updated to the published versio

    Proliferative capacity of murine hematopoietic stem cells.

    Full text link

    Agent-Based Modeling of Intracellular Transport

    Full text link
    We develop an agent-based model of the motion and pattern formation of vesicles. These intracellular particles can be found in four different modes of (undirected and directed) motion and can fuse with other vesicles. While the size of vesicles follows a log-normal distribution that changes over time due to fusion processes, their spatial distribution gives rise to distinct patterns. Their occurrence depends on the concentration of proteins which are synthesized based on the transcriptional activities of some genes. Hence, differences in these spatio-temporal vesicle patterns allow indirect conclusions about the (unknown) impact of these genes. By means of agent-based computer simulations we are able to reproduce such patterns on real temporal and spatial scales. Our modeling approach is based on Brownian agents with an internal degree of freedom, θ\theta, that represents the different modes of motion. Conditions inside the cell are modeled by an effective potential that differs for agents dependent on their value θ\theta. Agent's motion in this effective potential is modeled by an overdampted Langevin equation, changes of θ\theta are modeled as stochastic transitions with values obtained from experiments, and fusion events are modeled as space-dependent stochastic transitions. Our results for the spatio-temporal vesicle patterns can be used for a statistical comparison with experiments. We also derive hypotheses of how the silencing of some genes may affect the intracellular transport, and point to generalizations of the model
    • …
    corecore