1,707 research outputs found

    Codesigned Shared Decision-Making Diabetes Management Plan Tool for Adolescents With Type 1 Diabetes Mellitus and Their Parents: Prototype Development and Pilot Test

    Get PDF
    Background: Adolescents with type 1 diabetes mellitus have difficulty achieving optimal glycemic control, partly due to competing priorities that interfere with diabetes self-care. Often, significant diabetes-related family conflict occurs, and adolescents’ thoughts and feelings about diabetes management may be disregarded. Patient-centered diabetes outcomes may be better when adolescents feel engaged in the decision-making process. Objective: The objective of our study was to codesign a clinic intervention using shared decision making for addressing diabetes self-care with an adolescent patient and parent advisory board. Methods: The patient and parent advisory board consisted of 6 adolescents (teens) between the ages 12 and 18 years with type 1 diabetes mellitus and their parents recruited through our institution’s Pediatric Diabetes Program. Teens and parents provided informed consent and participated in 1 or both of 2 patient and parent advisory board sessions, lasting 3 to 4 hours each. Session 1 topics were (1) patient-centered outcomes related to quality of life, parent-teen shared diabetes management, and shared family experiences; and (2) implementation and acceptability of a patient-centered diabetes care plan intervention where shared decision making was used. We analyzed audio recordings, notes, and other materials to identify and extract ideas relevant to the development of a patient-centered diabetes management plan. These data were visually coded into similar themes. We used the information to develop a prototype for a diabetes management plan tool that we pilot tested during session 2. Results: Session 1 identified 6 principal patient-centered quality-of-life measurement domains: stress, fear and worry, mealtime struggles, assumptions and judgments, feeling abnormal, and conflict. We determined 2 objectives to be principally important for a diabetes management plan intervention: (1) focusing the intervention on diabetes distress and conflict resolution strategies, and (2) working toward a verbalized common goal. In session 2, we created the diabetes management plan tool according to these findings and will use it in a clinical trial with the aim of assisting with patient-centered goal setting. Conclusions: Patients with type 1 diabetes mellitus can be effectively engaged and involved in patient-centered research design. Teens with type 1 diabetes mellitus prioritize reducing family conflict and fitting into their social milieu over health outcomes at this time in their lives. It is important to acknowledge this when designing interventions to improve health outcomes in teens with type 1 diabetes mellitus

    Center for Pediatric Obesity and Diabetes Prevention Research

    Get PDF
    poster abstractBackground To facilitate both research and treatment of obesity in youth who are at especially high risk for diabetes, we have created the Center for Pediatric Obesity and Diabetes Prevention Research. The mission of the center is to advance the health of vulnerable populations through obesity and diabetes prevention research focusing on mechanisms of progression from obesity to type 2 diabetes, defining best practices for obesity/diabetes prevention among youth, and cost-effective translation of the research to the community. Specific Aims 1. To promote the clinical investigation of pathophysiologic mechanisms, diagnosis, and primary prevention of type 2 diabetes among vulnerable youth 2. Foster collaboration and facilitate interdisciplinary research between investigators interested in childhood obesity and diabetes prevention 3. Participate in community-based diabetes prevention research Key Ongoing Collaborative Research Projects Youth Diabetes Prevention Clinic (YDPC) – Patient-Centered Outcomes Project This program is designed to evaluate and assess the needs of adolescents (ages 10 – 21) who have evidence of prediabetes. Our goal is to successfully intervene in the trajectory toward the development of diabetes, and to promote healthy weight-control and improved well-being through an individualized treatment plan. Not only has this allowed us to address a significant unmet clinical need, but also to advance pediatric obesity patient-centered outcomes research and comparative effectiveness research in adolescent obesity / diabetes prevention. Dietary Intervention for Glucose Intolerance in Teens (DIG-IT Study) The objective of this study is to determine the impact on glycemic control, in adolescents who have prediabetes, of an individually-tailored wellness coaching strategy used to modify lifestyle habits. Additionally, the study aims to identify lifestyle factors that drive glycemic control, independent of changes in weight. We are conducting this study in in the Youth Diabetes Prevention Clinic via a collaboration with Dr. Gletsu-Miller (Purdue University). ENCOURAGE Healthy Families Study This is a randomized trial evaluating the comparative effectiveness and costs of an adaptation of the Diabetes Prevention Program (DPP) directed at mothers and their children. The intervention is a group based lifestyle program which we developed and implemented in partnership with the YMCA. We are comparing the ENCOURAGE intervention targeted to 1) mothers who have had gestational diabetes or prediabetes, and 2) mothers who have had GDM or prediabetes along with their school-aged children

    De novo DNA demethylation and non-coding transcription define active intergenic regulatory elements

    Get PDF
    Deep sequencing of mammalian DNA methylomes has uncovered a previously unpredicted number of discrete hypomethylated regions in intergenic space (iHMRs). Here, we combined whole genome bisulfite sequencing data with extensive gene-expression and chromatin-state data to define functional classes of iHMRs, and to reconstruct the dynamics of their establishment in a developmental setting. Comparing HMR profiles in embryonic stem and primary blood cells, we show that iHMRs mark an exclusive subset of active DNase hypersensitive sites (DHS), and that both developmentally constitutive and cell-type specific iHMRs display chromatin states typical of distinct regulatory elements. We also observe that iHMR changes are more predictive of nearby gene activity than the promoter HMR itself, and that expression of non-coding RNAs within the iHMR accompanies full activation and complete demethylation of mature B cell enhancers. Conserved sequence features corresponding to iHMR transcript start sites, including a discernable TATAA motif, suggest a conserved, functional role for transcription in these regions. Similarly, we explored both primate-specific and human-population variation at iHMRs, finding that while enhancer iHMRs are more variable in sequence and methylation status than any other functional class, conservation of the TATA box is highly predictive of iHMR maintenance, reflecting the impact of sequence plasticity and transcriptional signals on iHMR establishment. Overall, our analysis allowed us to construct a 3-step timeline in which 1) intergenic DHS are pre-established in the stem cell, 2) partial demethylation of blood specific intergenic DHSs occurs in blood progenitors, and 3) complete iHMR formation and transcription coincide with enhancer activation in lymphoid-specified cells

    Investigating Gender Disparities in Internal Medicine Residency Awards

    Get PDF
    Background: Significant gender disparities persist in career advancement for physicians. Studies have highlighted the lack of female representation in awards from both academic institutions and professional societies; these awards play a role in promotions, making them a fundamental building block of success. Objectives: We aim to explore the gender breakdown among resident awards presented by several Internal Medicine residency programs across the United States in this pilot study. Our ultimate goals are to define disparities in award selection, determine what variables contribute to these disparities, and work to mitigate these variables. Methods/Research: We generated a survey in REDCap to collect retrospective data about resident award selection from academic Internal Medicine residency programs across the country. This survey gathered awards data from 2009-2019 and included variables such as gender breakdown of the program, gender of resident award recipients, and details about how awards are selected. Eight programs completed the survey; these programs were from six different states in various geographic regions. Overall 43.1 percent of residents were female. Across all residency programs and years, there were 51 distinct resident awards with 290 (39.7%) female winners. Of the 51 distinct awards, there were 10 which were awarded to female residents with the same or higher frequency as males; 6 of these mentioned words that have been differentially associated with women in medicine such as “ambulatory,” “community,” “compassion,” and “humanism.” In the 41 awards favoring males, there was only a single mention of the word “compassion,” and no mention of the others. Conclusions/Impact: This data shows a concerning disparity in gender of award winners. In the future we will collect data from more residency programs and perform a thorough investigation of selection mechanisms that may help mitigate bias in order to ultimately propose strategies to reduce these gender disparities.https://jdc.jefferson.edu/sexandgenderhealth/1007/thumbnail.jp

    Characterization of Dicer-deficient murine embryonic stem cells

    Get PDF
    Dicer is an RNase III-family nuclease that initiates RNA interference (RNAi) and related phenomena by generation of the small RNAs that determine the specificity of these gene silencing pathways. We have previously shown that Dicer is essential for mammalian development, with Dicer-deficient mice dying at embryonic day 7.5 with a lack of detectable multipotent stem cells. To permit a more detailed investigation of the biological roles of Dicer, we have generated embryonic stem cell lines in which their single Dicer gene can be conditionally inactivated. As expected, Dicer loss compromises maturation of microRNAs and leads to a defect in gene silencing triggered by long dsRNAs. However, the absence of Dicer does not affect the ability of small interfering RNAs to repress gene expression. Of interest, Dicer loss does compromise the proliferation of ES cells, possibly rationalizing the phenotype previously observed in Dicer-null animals. Dicer loss also affects the abundance of transcripts from mammalian centromeres but does so without a pronounced affect on histone modification status at pericentric repeats or methylation of centromeric DNA. These studies provide a conditional model of RNAi deficiency in mammals that will permit the dissection of the biological roles of the RNAi machinery in cultured mammalian cells

    Genomic landscape of human allele-specific DNA methylation

    Get PDF
    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for fullgenome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species

    Suppression of prion protein in livestock by RNA interference

    Get PDF
    Given the difficulty of applying gene knockout technology to species other than mice, we decided to explore the utility of RNA interference (RNAi) in silencing the expression of genes in livestock. Short hairpin RNAs (shRNAs) were designed and screened for their ability to suppress the expression of caprine and bovine prion protein (PrP). Lentiviral vectors were used to deliver a transgene expressing GFP and an shRNA targeting PrP into goat fibroblasts. These cells were then used for nuclear transplantation to produce a cloned goat fetus, which was surgically recovered at 81 days of gestation and compared with an age-matched control derived by natural mating. All tissues examined in the cloned fetus expressed GFP, and PCR analysis confirmed the presence of the transgene encoding the PrP shRNA. Most relevant, Western blot analysis performed on brain tissues comparing the transgenic fetus with control demonstrated a significant (>90%) decrease in PrP expression levels. To confirm that similar methodologies could be applied to the bovine, recombinant virus was injected into the perivitelline space of bovine ova. After in vitro fertilization and culture, 76% of the blastocysts exhibited GFP expression, indicative that they expressed shRNAs targeting PrP. Our results provide strong evidence that the approach described here will be useful in producing transgenic livestock conferring potential disease resistance and provide an effective strategy for suppressing gene expression in a variety of large-animal models

    Comparison of β-Cell Function Between Overweight/Obese Adults and Adolescents Across the Spectrum of Glycemia

    Get PDF
    OBJECTIVE: Type 2 diabetes is a growing health problem among both adults and adolescents. To better understand the differences in the pathogenesis of diabetes between these groups, we examined differences in β-cell function along the spectrum of glucose tolerance. RESEARCH DESIGN AND METHODS: We evaluated 89 adults and 50 adolescents with normal glucose tolerance (NGT), dysglycemia, or type 2 diabetes. Oral glucose tolerance test results were used for C-peptide and insulin/glucose minimal modeling. Model-derived and direct measures of insulin secretion and insulin sensitivity were compared across glycemic stages and between age-groups at each stage. RESULTS: In adolescents with dysglycemia, there was marked insulin resistance (insulin sensitivity index: adolescents, median [interquartile range] 1.8 [1.1-2.4] × 10-4; adults, 5.0 [2.3-9.9]; P = 0.01). The nature of β-cell dysfunction across stages of dysglycemia differed between the groups. We observed higher levels of secretion among adolescents than adults (total insulin secretion: NGT, 143 [103-284] × 10-9/min adolescent vs. 106 [71-127], P = 0.001); adults showed stepwise impairments in static insulin secretion (NGT, 7.5 [4.0-10.3] × 10-9/min; dysglycemia, 5.0 [2.3-9.9]; type 2 diabetes, 0.7 [0.1-2.45]; P = 0.003), whereas adolescents showed diabetes-related impairment in dynamic secretion (NGT, 1,905 [1,630-3,913] × 10-9; dysglycemia, 2,703 [1,323-3,637]; type 2 diabetes, 1,189 [269-1,410]; P = 0.001). CONCLUSIONS: Adults and adolescents differ in the underlying defects leading to dysglycemia, and in the nature of β-cell dysfunction across stages of dysglycemia. These results may suggest different approaches to diabetes prevention in youths versus adults

    A genome-wide RNAi screen identifies factors required for distinct stages of C-elegans piRNA biogenesis

    Get PDF
    In animals, piRNAs and their associated Piwi proteins guard germ cell genomes against mobile genetic elements via an RNAi-like mechanism. In Caenorhabditis elegans, 21U-RNAs comprise the piRNA class, and these collaborate with 22G RNAs via unclear mechanisms to discriminate self from nonself and selectively and heritably silence the latter. Recent work indicates that 21U-RNAs are post-transcriptional processing products of individual transcription units that produce similar to 26-nucleotide capped precursors. However, nothing is known of how the expression of precursors is controlled or how primary transcripts give rise to mature small RNAs. We conducted a genome-wide RNAi screen to identify components of the 21U biogenesis machinery. Screening by direct, quantitative PCR (qPCR)-based measurements of mature 21U-RNA levels, we identified 22 genes important for 21U-RNA production, termed TOFUs (Twenty-One-u Fouled Ups). We also identified seven genes that normally repress 21U production. By measuring mature 21U-RNA and precursor levels for the seven strongest hits from the screen, we assigned factors to discrete stages of 21U-RNA production. Our work identifies for the first time factors separately required for the transcription of 21U precursors and the processing of these precursors into mature 21U-RNAs, thereby providing a resource for studying the biogenesis of this important small RNA class

    Rationale and Design of a Comparative Effectiveness Trial to Prevent Type 2 Diabetes in Mothers and Children: The ENCOURAGE Healthy Families Study

    Get PDF
    The number of youth with type 2 diabetes (T2D) is expected to quadruple over 4 decades. Gestational diabetes mellitus (GDM) is also increasing and is linked with development of T2D in women, and greater risk for T2D in adolescents exposed to GDM. Despite the increasing prevalence of T2D, approaches to prevent diabetes in high-risk youth and families are rare. To address this, we are conducting the Encourage Health Families Study (ENCOURAGE). This is a randomized trial evaluating the comparative effectiveness and costs of an adaptation of the Diabetes Prevention Program (DPP) directed at mothers who had GDM or prediabetes and their children. The intervention is a group-based lifestyle program which we developed and implemented in partnership with the YMCA. We are comparing the ENCOURAGE intervention targeted to 1) mothers who have had GDM or prediabetes, and 2) mothers who have had GDM or prediabetes along with their school-aged children. This manuscript provides 1) the rationale for a targeted approach to preventing T2D and the interventions, 2) description of the translation of the DPP curriculum, and 3) the study design and methodology. The primary aims are to determine if participation leads to 1) weight loss in high-risk mothers, and 2) youth having healthier weights and lifestyle habits. We will also evaluate costs associated with each approach. These data are essential to build a translation model of T2D prevention that is both realistic and feasible to address this growing problem in both youth and adults
    • …
    corecore