495 research outputs found

    Axion hot dark matter bounds

    Full text link
    We derive cosmological limits on two-component hot dark matter consisting of neutrinos and axions. We restrict the large-scale structure data to the safely linear regime, excluding the Lyman-alpha forest. We derive Bayesian credible regions in the two-parameter space consisting of m_a and sum(m_nu). Marginalizing over sum(m_nu) provides m_a<1.02 eV (95% CL). In the absence of axions the same data and methods give sum(m_nu)< 0.63 eV (95% CL).Comment: Contribution to Proc. 4th Patras Workshop on Axions, WIMPs and WISPs (18-21 June 2008, DESY

    Observational bounds on the cosmic radiation density

    Full text link
    We consider the inference of the cosmic radiation density, traditionally parameterised as the effective number of neutrino species N_eff, from precision cosmological data. Paying particular attention to systematic effects, notably scale-dependent biasing in the galaxy power spectrum, we find no evidence for a significant deviation of N_eff from the standard value of N_eff^0=3.046 in any combination of cosmological data sets, in contrast to some recent conclusions of other authors. The combination of all available data in the linear regime prefers, in the context of a ``vanilla+N_eff'' cosmological model, 1.1<N_eff<4.8 (95% C.L.) with a best-fit value of 2.6. Adding data at smaller scales, notably the Lyman-alpha forest, we find 2.2<N_eff<5.8 (95% C.L.) with 3.8 as the best fit. Inclusion of the Lyman-alpha data shifts the preferred N_eff upwards because the sigma_8 value derived from the SDSS Lyman-alpha data is inconsistent with that inferred from CMB. In an extended cosmological model that includes a nonzero mass for N_eff neutrino flavours, a running scalar spectral index and a w parameter for the dark energy, we find 0.8<N_eff<6.1 (95% C.L.) with 3.0 as the best fit.Comment: 23 pages, 3 figures, uses iopart.cls; v2: 1 new figure, references added, matches published versio

    Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes

    Full text link
    We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter epsilon (> 0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10^-4. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, a scale of new physics as high as 0.2 M_Planck could lead to observable signatures.Comment: 20 pages, 3 figures, uses iopart.cls; v2: 21 pages, added references, to appear in JCA

    Neutrino mass from future high redshift galaxy surveys: sensitivity and detection threshold

    Get PDF
    We calculate the sensitivity of future cosmic microwave background probes and large scale structure measurements from galaxy redshift surveys to the neutrino mass. We find that, for minimal models with few parameters, a measurement of the matter power spectrum over a large range of redshifts has more constraining power than a single measurement at low redshifts. However, this improvement in sensitivity does not extend to larger models. We also quantify how the non-Gaussian nature of the posterior distribution function with respect to the individual cosmological parameter influences such quantities as the sensitivity and the detection threshold. For realistic assumptions about future large scale structure data, the minimum detectable neutrino mass at 95 % C.L. is about 0.05 eV in the context of a minimal 8-parameter cosmological model. In a more general model framework, however, the detection threshold can increase by as much as a factor of three

    Cosmological constraints on neutrino plus axion hot dark matter

    Full text link
    We use observations of the cosmological large-scale structure to derive limits on two-component hot dark matter consisting of mass-degenerate neutrinos and hadronic axions, both components having velocity dispersions corresponding to their respective decoupling temperatures. We restrict the data samples to the safely linear regime, in particular excluding the Lyman-alpha forest. Using standard Bayesian inference techniques we derive credible regions in the two-parameter space of m_a and sum(m_nu). Marginalising over sum(m_nu) provides m_a < 1.2 eV (95% C.L.). In the absence of axions the same data and methods give sum(m_nu) < 0.65 eV (95% C.L.). We also derive limits on m_a for a range of axion-pion couplings up to one order of magnitude larger or smaller than the hadronic value.Comment: 13 pages, 2 figures, uses iopart.cl

    Probing neutrino decays with the cosmic microwave background

    Get PDF
    We investigate in detail the possibility of constraining neutrino decays with data from the cosmic microwave background radiation (CMBR). Two generic decays are considered \nu_H -> \nu_L \phi and \nu_H -> \nu_L \nu_L_bar \nu_L. We have solved the momentum dependent Boltzmann equation in order to account for possible relativistic decays. Doing this we estimate that any neutrino with mass m > 1 eV decaying before the present should be detectable with future CMBR data. Combining this result with other results on stable neutrinos, any neutrino mass of the order 1 eV should be detectable.Comment: 8 pages, 4 figures, to appear in Phys. Rev.

    Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5

    Full text link
    We update our previous constraints on two-component hot dark matter (axions and neutrinos), including the recent WMAP 5-year data release. Marginalising over sum m_nu provides m_a < 1.02 eV (95% C.L.) for the axion mass. In the absence of axions we find sum m_nu < 0.63 eV (95% C.L.).Comment: 4 pages, 1 figure, uses iopart.cls; v2 matches published versio

    Self-induced conversion in dense neutrino gases: Pendulum in flavour space

    Get PDF
    Neutrino-neutrino interactions can lead to collective flavour conversion effects in supernovae and in the early universe. We demonstrate that the case of "bipolar" oscillations, where a dense gas of neutrinos and antineutrinos in equal numbers completely converts from one flavour to another even if the mixing angle is small, is equivalent to a pendulum in flavour space. Bipolar flavour conversion corresponds to the swinging of the pendulum, which begins in an unstable upright position (the initial flavour), and passes through momentarily the vertically downward position (the other flavour) in the course of its motion. The time scale to complete one cycle of oscillation depends logarithmically on the vacuum mixing angle. Likewise, the presence of an ordinary medium can be shown analytically to contribute to a logarithmic increase in the bipolar conversion period. We further find that a more complex (and realistic) system of unequal numbers of neutrinos and antineutrinos is analogous to a spinning top subject to a torque. This analogy easily explains that such a system can oscillate in both the bipolar or the synchronised mode, depending on the neutrino density and the size of the neutrino-antineutrino asymmetry. Our simple model applies to isotropic and "single-angle" systems, as well as systems in which the matrix of neutrino-neutrino couplings possesses certain symmetries that prevent kinematical decoherence between the individual neutrino modes. In more general cases, however, and especially in the case of neutrinos emitted from a supernova core, these symmetries are not necessarily manifest. As a result, quick decoherence in flavour space, rather than collective bipolar oscillations, for both the normal and inverted mass hierarchies may in fact be the generic behaviour of dense neutrino gases

    Neutrino Physics: Open Theoretical Questions

    Full text link
    We know that neutrino mass and mixing provide a window to physics beyond the Standard Model. Now this window is open, at least partly. And the questions are: what do we see, which kind of new physics, and how far "beyond"? I summarize the present knowledge of neutrino mass and mixing, and then formulate the main open questions. Following the bottom-up approach, properties of the neutrino mass matrix are considered. Then different possible ways to uncover the underlying physics are discussed. Some results along the line of: see-saw, GUT and SUSY GUT are reviewed.Comment: 17 pages, latex, 12 figures. Talk given at the XXI International Symposium on Lepton and Photon Interactions at High Energies, ``Lepton Photon 2003", August 11-16, 2003 - Fermilab, Batavia, IL US

    Using BBN in cosmological parameter extraction from CMB: a forecast for Planck

    Full text link
    Data from future high-precision Cosmic Microwave Background (CMB) measurements will be sensitive to the primordial Helium abundance YpY_p. At the same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN) as a function of the baryon and radiation densities, as well as a neutrino chemical potential. We suggest to use this information to impose a self-consistent BBN prior on YpY_p and determine its impact on parameter inference from simulated Planck data. We find that this approach can significantly improve bounds on cosmological parameters compared to an analysis which treats YpY_p as a free parameter, if the neutrino chemical potential is taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary value can seriously bias parameter estimates. Under the assumption of degenerate BBN (i.e., letting the neutrino chemical potential Îľ\xi vary), the BBN prior's constraining power is somewhat weakened, but nevertheless allows us to constrain Îľ\xi with an accuracy that rivals bounds inferred from present data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio
    • …
    corecore