57 research outputs found

    Collective action of water molecules in zeolite dealumination

    Get PDF
    When exposed to steam, zeolite catalysts are irreversibly deactivated by loss of acidity and framework degradation caused by dealumination. Steaming typically occurs at elevated temperatures, making it challenging to investigate the mechanism with most approaches. Herein, we follow the dynamics of zeolite dealumination in situ, in the presence of a realistic loading of water molecules by means of enhanced sampling molecular dynamics simulations. H-SSZ-13 zeolite is chosen as a target system. Monte Carlo simulations predict a loading of more than 3 water molecules per unit cell at representative steaming conditions (450 °C, 1 bar steam). Our results show that a higher water loading lowers the free energy barrier of dealumination, as water molecules cooperate to facilitate hydrolysis of Al–O bonds. We find free energies of activation for dealumination that agree well with the available experimental measurements. Clearly, the use of enhanced sampling molecular dynamics yields a major step forward in the molecular level understanding of the dealumination; insight which is very hard to derive experimentally

    Snowpack fluxes of methane and carbon dioxide from high Arctic tundra

    Get PDF
    Measurements of the land-atmosphere exchange of the greenhouse gases methane (CH4) and carbon dioxide (CO2) in high Arctic tundra ecosystems are particularly difficult in the cold season, resulting in large uncertainty on flux magnitudes and their controlling factors during this long, frozen period. We conducted snowpack measurements of these gases at permafrost-underlain wetland sites in Zackenberg Valley (NE Greenland, 74°N) and Adventdalen Valley (Svalbard, 78°N), both of which also feature automatic closed chamber flux measurements during the snow-free period. At Zackenberg, cold season emissions were 1 to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4 fluxes resembled the same spatial pattern, which was largely attributed to differences in soil wetness controlling substrate accumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack but detected a pulse in the δ13C-CH4 stable isotopic signature of the soil's CH4 source during snowmelt, which suggests the release of a CH4 reservoir that was strongly affected by methanotrophic microorganisms. In the polygonal tundra of Adventdalen, the snowpack featured several ice layers, which suppressed the expected gas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4 and 3800 ppm CO2 by late winter. CH4 to CO2 ratios indicated distinctly different source characteristics in the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due to geomorphological soil cracks. Collectively, these findings suggest important ties between growing season and cold season greenhouse gas emissions from high Arctic tundra

    Activation of oxygen on (NH3–Cu–NH3)+ in NH3-SCR over Cu-CHA

    No full text
    Cu-CHA materials are efficient catalysts for NH 3 –SCR of NO x in oxygen excess. A crucial step in the reaction is oxygen (O 2 ) activation, which still is not well understood. Density functional theory calculations in combination with ab initio thermodynamics and molecular dynamics are here used to study O 2 dissociation on Cu(NH 3 ) 2 + species, which are present under NH 3 –SCR conditions. Direct dissociation of O 2 is found to be facile over a pair of Cu(NH 3 ) 2 + complexes whereas dissociation on a single Cu(NH 3 ) 2 + species is unlikely due to a high activation energy. The presence of NO promotes oxygen dissociation on both single and pairs of Cu(NH 3 ) 2 + complexes. Nitrites and nitrates are easily formed as O 2 dissociates, and NO adsorption over nitrates leads to facile formation of NO 2 . The results stress the importance of ligand-stabilized Cu species in Cu-CHA catalysts for NH 3 –SCR
    • …
    corecore