82 research outputs found

    Metabolomics Reveals Relationship between Plasma Inositols and Birth Weight: Possible Markers for Fetal Programming of Type 2 Diabetes

    Get PDF
    Epidemiological studies in man and with experimental animal models have shown that intrauterine growth restriction (IUGR) resulting in low birth weight is associated with higher risk of programming welfare diseases in later life. In the pig, severe IUGR occurs naturally and contribute substantially to a large intralitter variation in birth weight and may therefore be a good model for man. In the present paper the natural form of IUGR in pigs was studied close to term by nuclear magnetic resonance (NMR-)based metabolomics. The NMR-based investigations revealed different metabolic profiles of plasma samples from low-birth weight (LW) and high-birth weight (HW) piglets, respectively, and differences were assigned to levels of glucose and myo-inositol. Further studies by GC-MS revealed that LW piglets had a significant higher concentration of myoinositol and D-chiro-inositol in plasma compared to larger littermates. Myo-inositol and D-chiro-inositol have been coupled with glucose intolerance and insulin resistance in adults, and the present paper therefore suggests that IUGR is related to impaired glucose metabolism during fetal development, which may cause type 2 diabetes in adulthood

    Direct implementation of intestinal permeability test in nmr metabolomics for simultaneous biomarker discovery:a feasibility study in a preterm piglet model

    Get PDF
    Measurement of intestinal permeability (IP) is often used in the examination of inflammatory gastrointestinal disorders. IP can be assessed by measurement of urinary recovery of ingested non-metabolizable lactulose (L) and mannitol (M). The present study aimed to examine how measurements of IP can be integrated in a NMR-based metabolomics approach for a simultaneous quantification of L/M ratio and biomarker exploration. For this purpose, plasma and urine samples were collected from five-day-old preterm piglets (n = 20) with gastrointestinal disorders (subjected to intra-amniotic lipopolysaccharide (LPS, 1 mg/fetus)) after they had been administrated a 5% lactulose and 5% mannitol solution (15 mL/kg). The collected plasma and urine samples were analyzed by 1H NMR-based metabolomics. Urine L/M ratio measured by 1H NMR spectroscopy showed high correlation with the standard measurement of the urinary recoveries by enzymatic assays (r = 0.93, p < 0.05). Partial least squares (PLS) regressions and correlation analyses between L/M ratio and NMR metabolomics data revealed that L/M ratio was positively correlated with plasma lactate, acetate and succinate levels and negatively correlated with urinary hippuric acid and glycine. In conclusion, the present study demonstrated that NMR metabolomics enables simultaneous IP testing and discovery of biomarkers associated with an impaired intestinal permeability

    Metabolic effects of a 24-week energy-restricted intervention combined with low or high dairy intake in overweight women:An NMR-based metabolomics investigation

    Get PDF
    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO) and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study

    Background diet influences TMAO concentrations associated with red meat intake without influencing apparent hepatic TMAO-related activity in a porcine model

    Get PDF
    Red meat has been associated with an increased cardiovascular disease (CVD) risk, possibly through gut microbial-derived trimethylamine-N-oxide (TMAO). However, previous reports are conflicting, and influences from the background diet may modulate the impact of meat consumption. This study investigated the effect of red and white meat intake combined with two different background diets on urinary TMAO concentration and its association with the colon microbiome in addition to apparent hepatic TMAO-related activity. For 4 weeks, 32 pigs were fed chicken or red and processed meat combined with a prudent or western background diet. 1H NMR-based metabolomics analysis was conducted on urine samples and hepatic mRNA expression of TMAO-related genes determined. Lower urinary TMAO concentrations were observed after intake of red and processed meat when consumed with a prudent compared to a western background diet. In addition, correlation analyses between urinary TMAO concentrations and relative abundance of colon bacterial groups suggested an association between TMAO and specific bacterial taxa. Diet did not affect the hepatic mRNA expression of genes related to TMAO formation. The results suggest that meat-induced TMAO formation is regulated by mechanisms other than alterations at the hepatic gene expression level, possibly involving modulations of the gut microbiota

    Poison, plants and Palaeolithic hunters. An analytical method to investigate the presence of plant poison on archaeological artefacts

    Get PDF
    In this paper we present the development of a method for the detection of toxic substances on ancient arrow points. The aim is to go back in time until the Palaeolithic period in order to determine if poisonous substances were used to enhance the hunting weapons. The ethnographic documentation demonstrates that hunters of every latitude poisoned their weapons with toxic substances derived from plants and occasionally from animals. This highlights that often the weapons would be rather ineffective if the tips were not poisoned. The fact that toxic substances were available and the benefits arising from their application on throwing weapons, suggests that this practice could be widespread also among prehistoric hunters. The project reviewed the research of the toxic molecules starting from current information on modern plants and working backwards through the ages with the study of ethnographic and historical weapons. This knowledge was then applied to the archaeological material collected from International museum collections. Results have shown that using this method it is possible to detect traces of toxic molecules with mass spectrometry (MS) and hyphenated chromatographic techniques even on samples older than one hundred years, which we consider a positive incentive to continue studying plant poisons on ancient hunting tools

    Multiscale food structures and foodomics

    No full text
    corecore