227 research outputs found

    Glycaemic and insulinemic response to dietary carbohydrates in horses

    Get PDF
    BACKGROUND: Dietary sugar and starch affect plasma glucose and insulin concentrations. Little information is available about the effect of dietary fibre on plasma glucose and insulin concentration. It is hypothesized that different dietary fibre compositions will alter post-prandial glycaemic- and insulinemic index of test meals. The objective was to measure postprandial glucose and insulin concentrations in horses fed meals of different fibre compositions. METHODS: Blood was drawn via jugular vein puncture and the glycaemic and insulinemic index were calculated. RESULTS: The meal effect on glycaemic and insulinemic response followed the expected pattern, where plasma concentrations increased after feeding and declined after peak concentration. Glycaemic index was 100 (H), 102 (OB), 102 (BB) and 106 (M) and did not differ significantly between meals. Insulinemic index was 100 (H), 140 (OB), 121 (BB) and 125 (M) and did not differ significantly between meals. CONCLUSIONS: In conclusion, meals containing different fibre compositions did not affect the glycaemic- and insulinemic index in horses

    The role of outer membrane proteins and lipopolysaccharides for the sensitivity of escherichia coli to antimicrobial peptides

    Get PDF
    Bacterial resistance to classical antibiotics is emerging worldwide. The number of infections caused by multidrug resistant bacteria is increasing and becoming a serious threat for human health globally. In particular, Gram-negative pathogens including multidrug resistant Escherichia coli are of serious concern being resistant to the currently available antibiotics. All Gram-negative bacteria are enclosed by an outer membrane which acts as an additional protection barrier preventing the entry of toxic compounds including antibiotics and antimicrobial peptides (AMPs). In this study we report that the outer membrane component lipopolysaccharide (LPS) plays a crucial role for the antimicrobial susceptibility of E. coli BW25113 against the cationic AMPs Cap18, Cap11, Cap11-1-18m2, melittin, indolicidin, cecropin P1, cecropin B, and the polypeptide antibiotic colistin, whereas the outer membrane protease OmpT and the lipoprotein Lpp only play a minor role for the susceptibility against cationic AMPs. Increased susceptibility toward cationic AMPs was found for LPS deficient mutants of E. coli BW25113 harboring deletions in any of the genes required for the inner part of core-oligosaccharide of the LPS, waaC, waaE, waaF, waaG, and gmhA. In addition, our study demonstrates that the antimicrobial activity of Cap18, Cap11, Cap11-1-18m2, cecropin B, and cecropin P1 is not only dependent on the inner part of the core oligosaccharide, but also on the outer part and its sugar composition. Finally, we demonstrated that the antimicrobial activity of selected Cap18 derivatives harboring amino acid substitutions in the hydrophobic interface, are non-active against wild-type E. coli ATCC29522. By deleting waaC, waaE, waaF, or waaG the antimicrobial activity of the non-active derivatives can be partially or fully restored, suggesting a very close interplay between the LPS core oligosaccharide and the specific Cap18 derivative. Summarizing, this study implicates that the nature of the outer membrane component LPS has a big impact on the antimicrobial activity of cationic AMPs against E. coli. In particular, the inner as well as the outer part of the core oligosaccharide are important elements determining the antimicrobial susceptibility of E. coli against cationic AMPs

    Genetic Association of Multiple Sclerosis with the Marker rs391745 near the Endogenous Retroviral Locus HERV-Fc1: Analysis of Disease Subtypes

    Get PDF
    We have previously described the occurrence of multiple sclerosis (MS) to be associated with human endogenous retroviruses, specifically the X-linked viral locus HERV-Fc1. The aim of this study was to investigate a possible association of the HERV-Fc1 locus with subtypes of MS. MS patients are generally subdivided into three categories: Remitting/Relapsing and Secondary Progressive, which together constitute Bout Onset MS, and Primary Progressive. In this study of 1181 MS patients and 1886 controls we found that Bout Onset MS was associated with the C-allele of the marker rs391745 near the HERV-Fc1 locus (p = 0.003), while primary progressive disease was not. The ability to see genetic differences between subtypes of MS near this gene speaks for the involvement of the virus HERV-Fc1 locus in modifying the disease course of MS

    Distribution of cholinergic nerve terminals in the aged human brain measured with [18F]FEOBV PET and its correlation with histological data

    Get PDF
    Introduction: [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. Materials and methods: [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. Results: Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. Discussion: Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo

    In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism:Randomized, placebo-controlled, double-blind clinical trial

    Get PDF
    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMR(glc)) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [(11)C]PIB (PIB), CMR(glc) with [(18)F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMR(glc) declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMR(glc) after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMR(glc) that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered
    • …
    corecore