130 research outputs found

    Gravitational-wave observations of binary black holes: Effect of non-quadrupole modes

    Get PDF
    We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from non-spinning black-hole binaries. We evaluate the loss of signal-to-noise ratio and the systematic errors in the estimated parameters when one uses a quadrupole-mode template family to detect GW signals with all the relevant modes, for target signals with total masses 20M⊙≤M≤250M⊙20 M_\odot \leq M \leq 250 M_\odot and mass ratios 1≤q≤181 \leq q \leq 18. Target signals are constructed by matching numerical-relativity simulations describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that waveform templates modeling only the quadrupolar modes of the GW signal are sufficient (loss of detection rate <10%< 10\%) for the detection of GWs with mass ratios q≤4q\leq4 using advanced GW observatories. Neglecting the effect of non-quadrupole modes will introduce systematic errors in the estimated parameters. The systematic errors are larger than the expected 1 σ1\,\sigma statistical errors for binaries with large, unequal masses (q≳4,M≳150M⊙q\gtrsim4, M \gtrsim 150 M_\odot), for sky-averaged signal-to-noise ratios larger than 88. We provide a summary of the regions in the parameter space where neglecting non-quadrupole modes will cause unacceptable loss of detection rates and unacceptably large systematic biases in the estimated parameters.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Frequency-domain gravitational waves from non-precessing black-hole binaries. I. New numerical waveforms and anatomy of the signal

    Full text link
    In this paper we discuss the anatomy of frequency-domain gravitational-wave signals from non-precessing black-hole coalescences with the goal of constructing accurate phenomenological waveform models. We first present new numerical-relativity simulations for mass ratios up to 18 including spins. From a comparison of different post-Newtonian approximants with numerical-relativity data we select the uncalibrated SEOBNRv2 model as the most appropriate for the purpose of constructing hybrid post-Newtonian/numerical-relativity waveforms, and we discuss how we prepare time-domain and frequency-domain hybrid data sets. We then use our data together with results in the literature to calibrate simple explicit expressions for the final spin and radiated energy. Equipped with our prediction for the final state we then develop a simple and accurate merger-ringdown-model based on modified Lorentzians in the gravitational wave amplitude and phase, and we discuss a simple method to represent the low frequency signal augmenting the TaylorF2 post-Newtonian approximant with terms corresponding to higher orders in the post-Newtonian expansion. We finally discuss different options for modelling the small intermediate frequency regime between inspiral and merger-ringdown. A complete phenomenological model based on the present work is presented in a companion paper.Comment: 17 pages, 18 figures ,minor edits to tex

    Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era

    Get PDF
    We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of non-precessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body--numerical-relativity waveforms up to mass ratios of 1:18 and black-hole spins of ∣a/m∣∼0.85|a/m| \sim 0.85 (0.980.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger-ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1\% against all 19 calibration hybrids, and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that \emph{any} merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative non-precessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10\% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.Comment: 27 pages, 21 figures, Updated coefficients tabl

    Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms

    Get PDF
    Gravitational-wave signals from black-hole binaries with nonprecessing spins are described by four parameters—each black hole’s mass and spin. It has been shown that the dominant spin effects can be modeled by a single spin parameter, leading to the development of several three-parameter waveform models. Previous studies indicate that these models should be adequate for gravitational-wave detection. In this paper we focus on the systematic biases that would result from using them to estimate binary parameters, and consider a one-parameter family of configurations at mass ratio 4 and for one choice of effective single spin. We find that for low-mass binaries within that family of configurations, where the observable waveform is dominated by the inspiral, the systematic bias in all physical parameters is smaller than the parameter uncertainty due to degeneracies between the mass ratio and the spins, at least up to signal-to-noise ratios (SNRs) of 50. For higher-mass binaries, where the merger and ringdown make a greater contribution to the observed signal, the bias in the mass ratio is comparable to its uncertainty at SNRs of only ∼30, and the bias in the measurement of the total spin is larger than the uncertainty defined by the 90% confidence region even at an SNR of only 10. Although this bias may be mitigated in future models by a better choice of single-effective-spin parameter, these results suggest that it may be possible to accurately measure both black-hole spins in intermediate-mass binaries

    An efficient iterative method to reduce eccentricity in numerical-relativity simulations of compact binary inspiral

    Get PDF
    We present a new iterative method to reduce eccentricity in black-hole-binary simulations. Given a good first estimate of low-eccentricity starting momenta, we evolve puncture initial data for ~4 orbits and construct improved initial parameters by comparing the inspiral with post-Newtonian calculations. Our method is the first to be applied directly to the gravitational-wave (GW) signal, rather than the orbital motion. The GW signal is in general less contaminated by gauge effects, which, in moving-puncture simulations, limit orbital-motion-based measurements of the eccentricity to an uncertainty of Δe∼0.002\Delta e \sim 0.002, making it difficult to reduce the eccentricity below this value. Our new method can reach eccentricities below 10−310^{-3} in one or two iteration steps; we find that this is well below the requirements for GW astronomy in the advanced detector era. Our method can be readily adapted to any compact-binary simulation with GW emission, including black-hole-binary simulations that use alternative approaches, and neutron-star-binary simulations. We also comment on the differences in eccentricity estimates based on the strain hh, and the Newman-Penrose scalar Ψ4\Psi_4.Comment: 24 pages, 25 figures, pdflatex; v2: minor change

    Can we measure individual black-hole spins from gravitational-wave observations?

    Get PDF
    Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are known to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary’s mass ratio, at least for signals that are dominated by the binary’s inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for nonprecessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one effective spin will be sufficient. Our work does not consider precessing binaries or subdominant harmonics, although we provide some arguments why we expect that these will not qualitatively change our conclusions

    Land Use and Salinity Drive Changes in SAV Abundance and Community Composition

    Get PDF
    Conserving and restoring submerged aquatic vegetation (SAV) are key management goals for estuaries worldwide because SAV integrates many aspects of water quality and provides a wide range of ecosystem services. Management strategies are typically focused on aggregated abundance of several SAV species, because species cannot be easily distinguished in remotely sensed data. Human land use and shoreline alteration have been shown to negatively impact SAV abundance, but the effects have varied with study, spatial scale, and location. The differences in reported effects may be partly due to the focus on abundance, which overlooks within-community and among-community dynamics that generate total SAV abundance. We analyzed long-term SAV aerial survey data (1984-2009) and ground observations of community composition (1984-2012) in subestuaries of Chesapeake Bay to integrate variations in abundance with differences in community composition. We identified five communities (mixed freshwater, milfoil-Zannichellia, mixed mesohaline, Zannichellia, and Ruppia-Zostera). Temporal variations in SAV abundance were more strongly related to community identity than to terrestrial stressors, and responses to stressors differed among communities and among species. In one fifth of the subestuaries, the community identity changed during the study, and the probability of such a change was positively related to the prevalence of riprapped shoreline in the subestuary. Mixed freshwater communities had the highest rates of recovery, and this may have been driven by Hydrilla verticillata, which was the single best predictor of SAV recovery rate. Additional species-specific and community-specific research will likely yield better understanding of the factors affecting community identity and SAV abundance, more accurate predictive models, and more effective management strategies
    • …
    corecore