159 research outputs found

    AN INVESTIGATION OF NITROUS AND NITRIC ACID DIURNAL CYCLES IN BIOMASS BURNING PLUMES

    Get PDF
    The Western wildfire Experient for Cloud chemistry, Aerosol absorption, and Nitrogen (WE-CAN), an NSF funded multi-platform campaign, launched with the goal of expanding scientific knowledge of the complex chemical reactions taking place inside biomass burning plumes. As a part of the WE-CAN 2018 field campaign this investigation focuses on the diurnal cycles of nitrous and nitric acid in fresh and aged smoke plumes from the Rabbit Foot Fire in the Salmon-Challis National Forest, ID. The measurements of nitrous and nitric acid in smoke plumes were made with a dual Mist Chamber/Ion Chromatograph system installed in the NOAA CSD mobile laboratory. From these measurements we observe a clear distinction between daytime and nighttime levels of nitrous and nitric acid in smoke plumes. Nitrous acid levels peaks in the early morning hours, as high as 2ppb, and dissipates a few hours after sunrise to ~50pptv. In contrast, nitric acid levels are highest in aged smoke, 0.5 ppb, and lowest during the nighttime hours, ~20pptv. We also observe a high level of variability in individual plumes. Sample to sample concentrations of nitrous and/or nitric acid vary as much as 50%. Additionally, the two species increase both in and out of phase with one another with no distinct pattern. The ratio of the two species is a useful metric for determining the age or level of chemical processing the plume had undergone. Most prominently, we observe the rapid production of HNO3 outpaced the production of HONO during both day- and nighttime regimes

    Circulation of pathogenic spirochetes in the genus Borrelia within ticks and seabirds in breeding colonies of Newfoundland and Labrador

    Get PDF
    Birds are the reservoir hosts of Borrelia garinii, the primary causative agent of neurological Lyme disease. In 1991 it was also discovered in the seabird tick, Ixodes uriae, in a seabird colony in Sweden, and subsequently has been found in seabird ticks globally. In 2005, the bacterium was found in seabird colonies in Newfoundland and Labrador (NL); representing its first documentation in the western Atlantic and North America. In this thesis, aspects of enzootic B. garinii transmission cycles were studied at five seabird colonies in NL. First, seasonality of I. uriae ticks in seabird colonies observed from 2011 to 2015 was elucidated using qualitative model-based statistics. All instars were found throughout the June-August study period, although larvae had one peak in June, and adults had two peaks (in June and August). Tick numbers varied across sites, year, and with climate. Second, Borrelia transmission cycles were explored by polymerase chain reaction (PCR) to assess Borrelia spp. infection prevalence in the ticks and by serological methods to assess evidence of infection in seabirds. Of the ticks, 7.5% were PCR-positive for B. garinii, and 78.8% of seabirds were sero-positive, indicating that B. garinii transmission cycles are occurring in the colonies studied. Five I. uriae from two seabird colonies were positive for the Asian strain of the Lyme disease-causing species, B. bavariensis, which has previously only been described from the terrestrial realm associated with rodent reservoirs. The complete microbiome of ticks from two seabird colonies was also explored, which was consistent with PCR-based estimates of Borrelia spp. prevalence and identified infections with Coxiella and Ehrlichia spp., which may also be tick-borne. Third, the phylogenetic relationships of B. garinii found in the study samples, with B. garinii from elsewhere in the world, were explored using concatenated multi-locus sequence typing (MLST) gene sequences. This revealed close relationships between B. garinii in Eurasia and seabird colonies in NL. These results add to our knowledge of all levels of this complex, under-studied system, and help to inform us on how seabirds facilitate the global dispersion of B. garinii and other Borrelia species

    Increasing diversity of production cell lines through miniaturization, automation, and high-throughput analytics

    Get PDF
    The development of a successful biologic therapeutic manufacturing process begins with the creation of a stable clonal cell line. Since attributes of the production cell line will significantly impact upstream and downstream processes, researchers must find ways to generate several candidate lines with diverse properties. However, a wide diversity is difficult to achieve since cultures are commonly selected, maintained, and screened as populations. In these populations, robust sub-populations can overtake the overall culture and reduce diversity. To combat this, sub-populations must be physically separated by splitting or subcloning, and maintained in individual vessels requiring intensive labor and infrastructure. As a result, researchers must balance between either increasing diversity vs. increasing resources need to maintain and screen hundreds of cultures. In order to shift this balance towards greater diversity, we have developed systems that combines miniaturization of culture vessels, targeted use of automation, and single cell analysis to allow for hundreds of cell lines to be isolated, maintained, and analyzed. We demonstrate cell lines can be easily maintained in simple low volume formats with no impact on cells. We show that we can significantly improve and maintain diversity through separation and isolation of hundreds of cultures. Additionally, higher throughputs allows to assess cell line phenotypes of multiple candidate lines early in development. Benefits achieved through this approach did not increase resources or timelines. Moving towards miniaturization combined with single cell analysis will also enable future possibilities for more precise cell engineering and gene editing

    Acoustic middle-ear-muscle-reflex thresholds in humans with normal audiograms:No relations to tinnitus, speech perception in noise, or noise exposure

    Get PDF
    The acoustic middle-ear-muscle reflex (MEMR) has been suggested as a sensitive non-invasive measure of cochlear synaptopathy, the loss of synapses between inner hair cells and auditory nerve fibers. In the present study, clinical MEMR thresholds were measured for 1-, 2-, and 4-kHz tonal elicitors, using a procedure shown to produce thresholds with excellent reliability. MEMR thresholds of 19 participants with tinnitus and normal audiograms were compared to those of 19 age- and sex-matched controls. MEMR thresholds did not differ significantly between the two groups at any frequency. These 38 participants were included in a larger sample of 70 participants with normal audiograms. For this larger group, MEMR thresholds were compared to a measure of spatial speech perception in noise (SPiN) and a detailed self-report estimate of lifetime noise exposure. MEMR thresholds were unrelated to either SPiN or noise exposure, despite a wide range in both measures. It is possible that thresholds measured using a clinical paradigm are less sensitive to synaptopathy than those obtained using more sophisticated measurement techniques; however, we had good sensitivity at the group level, and even trends in the hypothesized direction were not observed. To the extent that MEMR thresholds are sensitive to cochlear synaptopathy, the present results provide no evidence that tinnitus, SPiN, or noise exposure are related to synaptopathy in the population studied

    Tensile Testing to Quantitate the Anisotropy and Strain Hardening of Mozzarella Cheese

    Get PDF
    We explored anisotropy of mozzarella cheese: its presence is debated in the literature. Tensile testing proved a good method because the location and mode of failure were clear. Mozzarella cheese cut direct from the block showed no significant anisotropy, though confocal microscopy showed good structure alignment at a microscale. Deliberately elongated mozzarella cheese showed strong anisotropy with tensile strength in the elongation or fibre direction ∼3.5× that perpendicular to the fibres. Temperature of elongation had a marked impact on anisotropy with maximum anisotropy after elongation at 70 °C. We suggest the disagreement on anisotropy in the literature is related to the method of packing the mozzarella cheese into a block after the stretching stage of manufacture. Tensile stress/strain curves in the fibre direction showed marked strain hardening with modulus just before fracture ∼2.1× that of the initial sample, but no strain hardening was found perpendicular to the fibre direction

    Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation

    Get PDF
    Auditory deprivation and stimulation can change the threshold of the acoustic reflex, but the mechanisms underlying these changes remain largely unknown. In order to elucidate the mechanism, we sought to characterize the time-course as well as the frequency specificity of changes in acoustic reflex thresholds (ARTs). In addition, we compared ipsilateral and contralateral measurements because the pattern of findings may shed light on the anatomical location of the change in neural gain. Twenty-four normal-hearing adults wore an earplug continuously in one ear for six days. We measured ipsilateral and contralateral ARTs in both ears on six occasions (baseline, after 2, 4 and 6 days of earplug use, and 4 and 24 hours after earplug removal), using pure tones at 0.5, 1, 2 and 4 kHz and a broadband noise stimulus, and an experimenter-blinded design. We found that ipsi-as well as contralateral ARTs were obtained at a lower sound pressure level after earplug use, but only when the reflex was elicited by stimulating the treatment ear. Changes in contralateral ARTs were not the same as changes in ipsilateral ARTs when the stimulus was presented to the control ear. Changes in ARTs were present after 2 days of earplug use, and reached statistical significance after 4 days, when the ipsilateral and contralateral ARTs were measured in the treatment ear. The greatest changes in ARTs occurred at 2 and 4 kHz, the frequencies most attenuated by the earplug. After removal of the earplug, ARTs started to return to baseline relatively quickly, and were not significantly different from baseline by 4-24 hours. There was a trend for the recovery to occur quicker than the onset. The changes in ARTs are consistent with a frequency-specific gain control mechanism operating around the level of the ventral cochlear nucleus in the treatment ear, on a time scale of hours to days. These findings, specifically the time course of change, could be applicable to other sensory systems, which have also shown evidence of a neural gain control mechanism

    Reliability and interrelations of seven proxy measures of cochlear synaptopathy

    Get PDF
    Investigations of cochlear synaptopathy in living humans rely on proxy measures of auditory nerve function. Numerous procedures have been developed, typically based on the auditory brainstem response (ABR), envelope-following response (EFR), or middle-ear-muscle reflex (MEMR). Validation is challenging, due to the absence of a gold-standard measure in humans. Some metrics correlate with synaptic survival in animal models, but translation between species is not straightforward; measurements in humans are likely to reflect greater error and greater variability from non-synaptopathic sources. The present study assessed the reliability of seven measures, as well as testing for correlations between them. Thirty-one young women with normal audiograms underwent repeated measurements of ABR wave I amplitude, ABR wave I growth, ABR wave V latency shift in noise, EFR amplitude, EFR growth with stimulus modulation depth, MEMR threshold, and an MEMR across-frequency difference measure. Intraclass correlation coefficients for ABR wave I amplitude, EFR amplitude, and MEMR threshold ranged from 0.85 to 0.93, suggesting that such tests can yield highly reliable results, given careful measurement techniques. The ABR and EFR difference measures exhibited only poor-to-moderate reliability. No significant correlations, nor any consistent trends, were observed between the various measures, providing no indication that these metrics reflect the same underlying physiological processes. Findings suggest that many proxy measures of cochlear synaptopathy should be regarded with caution, at least when employed in young adults with normal audiograms
    • …
    corecore