45 research outputs found

    Expression and cellular distribution of cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) in porcine oocytes before and after in vitro maturation

    Get PDF
    It is recognised that connexin 43 (Cx43) and cyclin-dependent kinase 4 (Cdk4) are involved in the cumulus cell-oocyte communication via gap junctions and the control of cell cycle progress. However, little is known about their mRNA expression pattern and encoded proteins distribution in porcine oocytes during in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were collected from 31 puberal crossbred Landrace gilts and analysed for their Cdk4 and Cx43 mRNA expression using RQ-PCR and for the respective protein expression by confocal microscopic observations. An increased Cdk4 and Cx43 mRNA expression was found in oocytes after IVM (P < 0.001 and P < 0.05, respectively). Confocal microscopic observations revealed a significant increase of Cdk4 protein expression in the cytoplasm of oocytes during the maturation process. The localisation of Cx43 changed from zona pellucida before to cytoplasm of oocytes after IVM. It is supposed that the increased expression of Cdk4 and Cx43 mRNA in oocytes after IVM is linked with the accumulation of a large amount of templates during the process of oocyte maturation. The translocation especially of Cx43 from the zona pellucida into the cytoplasm may be associated with a decrease in gap junction activity in fully grown porcine oocytes. Both Cdk4 and Cx43 can be used as ‘checkpoints’ of oocyte maturation

    SARS-CoV-2 Genetic Variability and Non-Specific Immunity Associated with the Use of Different BCG Strains—A Molecular and Clinical Approach

    No full text
    The effect of BCG vaccination against tuberculosis on the reduction in COVID-19 infection is related to the effect of the BCG vaccine on the immunomodulation of non-specific immunity. In the early stages of the pandemic, countries with universal BCG vaccination programs registered a low number of new cases of COVID-19, with the situation now reversed, as exemplified by India. The high genetic variability of SARS-CoV-2, a known characteristic of RNA viruses, causing the occurrence of SARS-CoV-2 variants may have led to the virus adapting to overcome the initial immune protection. The strains from the United Kingdom (B1.1.7), Brazil (B1.1.28 and B1.1.33), South Africa (B.1.351), and India (B.1.617) are characterized by a greater ability to spread in the environment, in comparison with the original infectious agent of SARS-CoV-2. It should be remembered that the large variation in the genetic makeup of SARS-CoV-2 may result in future changes in its pathogenicity, immunogenicity and antigenicity, and therefore it is necessary to carefully study the mutations occurring within the virus to determine whether the current vaccines will remain effective. However, most studies show that monoclonal antibodies produced after vaccination against COVID-19 are effective against the newly developed variants

    Decellularization of Dense Regular Connective Tissue—Cellular and Molecular Modification with Applications in Regenerative Medicine

    No full text
    Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration

    Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction

    No full text
    Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS

    Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction

    No full text
    Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS

    Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts

    No full text
    Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change &gt;|2|, adjusted p value &lt; 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine

    Expression Profile of New Marker Genes Involved in Differentiation of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells into Chondrocytes, Osteoblasts, Adipocytes and Neural-like Cells

    No full text
    Wharton’s jelly (WJ) contains mesenchymal stem cells (MSCs) exhibiting broad immunomodulatory properties and differentiation capacity, which makes them a promising tool for cellular therapies. Although the osteogenic, chondrogenic and adipogenic differentiation is a gold standard for proper identification of MSCs, it is important to elucidate the exact molecular mechanisms governing these processes to develop safe and efficient cellular therapies. Umbilical cords were collected from healthy, full-term deliveries, for subsequent MSCs (WJ-MSCs) isolation. WJ-MSCs were cultivated in vitro for osteogenic, chondrogenic, adipogenic and neurogenic differentiation. The RNA samples were isolated and the transcript levels were evaluated using NovaSeq platform, which led to the identification of differentially expressed genes. Expression of H19 and SLPI was enhanced in adipocytes, chondrocytes and osteoblasts, and NPPB was decreased in all analyzed groups compared to the control. KISS1 was down-regulated in adipocytes, chondrocytes, and neural-like cells compared to the control. The most of identified genes were already implicated in differentiation of MSCs; however, some genes (PROK1, OCA2) have not yet been associated with initiating final cell fate. The current results indicate that both osteo- and adipo-induced WJ-MSCs share many similarities regarding the most overexpressed genes, while the neuro-induced WJ-MSCs are quite distinctive from the other three groups. Overall, this study provides an insight into the transcriptomic changes occurring during the differentiation of WJ-MSCs and enables the identification of novel markers involved in this process, which may serve as a reference for further research exploring the role of these genes in physiology of WJ-MSCs and in regenerative medicine

    Cellular Processes in Human Ovarian Follicles Are Regulated by Expression Profile of New Gene Markers&mdash;Clinical Approach

    No full text
    In the growing ovarian follicle, the maturing oocyte is accompanied by cumulus (CCs) and granulosa (GCs) cells. Currently, there remain many unanswered questions about the epithelial origin of these cells. Global and targeted gene transcript levels were assessed on 1, 7, 15, 30 days of culture for CCs and GCs. Detailed analysis of the genes belonging to epithelial cell-associated ontological groups allowed us to assess a total of 168 genes expressed in CCs (97 genes) and GCs (71 genes) during long-term in vitro culture. Expression changes of the analyzed genes allowed the identification of the group of genes: TGFBR3, PTGS2, PRKX, AHI1, and IL11, whose expression decreased the most and the group of ANXA3, DKK1, CCND1, STC1, CAV1, and SFRP4 genes, whose expression significantly increased. These genes&rsquo; expression indicates CCs and GCs epithelialization processes and their epithelial origin. Expression change analysis of genes involved in epithelization processes in GCs and CCs during their in vitro culture made it possible to describe the most significantly altered of the 11 genes. Detailed analysis of gene expression in these two cell populations at different time intervals confirms their ovarian surface epithelial origin. Furthermore, some gene expression profiles appear to have tumorigenic properties, suggesting that granulosa cells may play a role in cancerogenesis

    Solubility, Permeability, and Dissolution Rate of Naftidrofuryl Oxalate Based on BCS Criteria

    No full text
    The Biopharmaceutics Classification System (BCS) was conceived to classify drug substances by their in vitro aqueous solubility and permeability properties. The essential activity of naftidrofuryl oxalate (NF) has been described as the inhibition of the serotonin receptors (5-HT2), resulting in vasodilation and decreasing blood pressure. Since the early 1980s, NF has been used to treat several venous and cerebral diseases. There is no data available on the BCS classification of NF. However, based on its physical-chemical properties, NF might be considered to belong to the 1st or the 3rd BCS class. The present study aimed to provide data concerning the solubility and permeability of NF through Caco-2 monolayers and propose its preliminary classification into BCS. We showed that NF is a highly soluble and permeable drug substance; thus, it might be suggested to belong to BCS class I. Additionally, a high dissolution rate of the encapsulated NF based on Praxilene&reg; 100 mg formulation was revealed. Hence, it might be considered as an immediate-release (IR)
    corecore