566 research outputs found

    Unforeseen Costs of Cutting Mosquito Surveillance Budgets

    Get PDF
    A budget proposal to stop the U.S. Centers for Disease Control and Prevention (CDC) funding in surveillance and research for mosquito-borne diseases such as dengue and West Nile virus has the potential to leave the country ill-prepared to handle new emerging diseases and manage existing ones. In order to demonstrate the consequences of such a measure, if implemented, we evaluated the impact of delayed control responses to dengue epidemics (a likely scenario emerging from the proposed CDC budget cut) in an economically developed urban environment. We used a mathematical model to generate hypothetical scenarios of delayed response to a dengue introduction (a consequence of halted mosquito surveillance) in the City of Cairns, Queensland, Australia. We then coupled the results of such a model with mosquito surveillance and case management costs to estimate the cumulative costs of each response scenario. Our study shows that halting mosquito surveillance can increase the management costs of epidemics by up to an order of magnitude in comparison to a strategy with sustained surveillance and early case detection. Our analysis shows that the total costs of preparedness through surveillance are far lower than the ones needed to respond to the introduction of vector-borne pathogens, even without consideration of the cost in human lives and well-being. More specifically, our findings provide a science-based justification for the re-assessment of the current proposal to slash the budget of the CDC vector-borne diseases program, and emphasize the need for improved and sustainable systems for vector-borne disease surveillance

    Effects of an evidence service on health-system policy makers' use of research evidence: A protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health-system policy makers need timely access to synthesised research evidence to inform the policy-making process. No efforts to address this need have been evaluated using an experimental quantitative design. We developed an evidence service that draws inputs from Health Systems Evidence, which is a database of policy-relevant systematic reviews. The reviews have been (a) categorised by topic and type of review; (b) coded by the last year searches for studies were conducted and by the countries in which included studies were conducted; (c) rated for quality; and (d) linked to available user-friendly summaries, scientific abstracts, and full-text reports. Our goal is to evaluate whether a "full-serve" evidence service increases the use of synthesized research evidence by policy analysts and advisors in the Ontario Ministry of Health and Long-Term Care (MOHLTC) as compared to a "self-serve" evidence service.</p> <p>Methods/design</p> <p>We will conduct a two-arm randomized controlled trial (RCT), along with a follow-up qualitative process study in order to explore the findings in greater depth. For the RCT, all policy analysts and policy advisors (n = 168) in a single division of the MOHLTC will be invited to participate. Using a stratified randomized design, participants will be randomized to receive either the "full-serve" evidence service (database access, monthly e-mail alerts, and full-text article availability) or the "self-serve" evidence service (database access only). The trial duration will be ten months (two-month baseline period, six-month intervention period, and two month cross-over period). The primary outcome will be the mean number of site visits/month/user between baseline and the end of the intervention period. The secondary outcome will be participants' intention to use research evidence. For the qualitative study, 15 participants from each trial arm (n = 30) will be purposively sampled. One-on-one semi-structured interviews will be conducted by telephone on their views about and their experiences with the evidence service they received, how helpful it was in their work, why it was helpful (or not helpful), what aspects were most and least helpful and why, and recommendations for next steps.</p> <p>Discussion</p> <p>To our knowledge, this will be the first RCT to evaluate the effects of an evidence service specifically designed to support health-system policy makers in finding and using research evidence.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01307228">NCT01307228</a></p

    The epidemiology of invasive pneumococcal disease in the Canadian North from 1999 to 2010

    Get PDF
    Introduction . The International Circumpolar Surveillance network is a population-based surveillance system that collects data on invasive pneumococcal disease (IPD) in Northern Canada. A 7-valent pneumococcal conjugate vaccine was first introduced in some regions of Northern Canada in 2002, followed by 10-valent (2009) and 13-valent (PCV-13) vaccines (2010). A 23-valent polysaccharide (PPV-23) vaccine was first introduced in 1988 for special populations and adults aged 65 years and older. To describe the epidemiology in the context of pneumococcal vaccination programs, we analysed surveillance data from Northern Canada from 1999 to 2010. Methods . A standardized case report form capturing demographic and clinical information was completed for all IPD cases in Northern Canada meeting the national case definition. Isolates were sent to a reference laboratory for confirmation, serotyping and antimicrobial resistance testing. Both laboratory and epidemiological data were sent to the Public Health Agency of Canada for analysis. Population denominators were obtained from Statistics Canada. Results . From 1999 to 2010, 433 IPD cases were reported (average 36 cases per year). Incidence was greatest among infants aged &#60;2 years and among those aged 65 years and older, with an average annual incidence of 133 and 67 cases per 100,000 population, respectively. After a peak in incidence in 2008, rates among infants have declined. Incidence rates varied from 2 to 16 times greater, depending on the year, among Aboriginals compared to non-Aboriginals. Hospitalization was reported in 89% of all cases and the case fatality ratio was 6.0%. Clinical manifestations varied, with some patients reporting &#x003E;1 manifestation. Pneumonia was the most common (70%), followed by bacteremia/septicaemia (30%) and meningitis (8%). Approximately, 42% of cases aged &#60;2 years in 2009 and 2010 had serotypes covered by the PCV-13. In addition, the majority (89%) of serotypes isolated in cases aged 65 years and older were included in the PPV-23 vaccine. Conclusion . IPD continues to be a major cause of disease in Northern Canadian populations, with particularly high rates among infants and Aboriginals. Continued surveillance is needed to determine the impact of conjugate pneumococcal vaccine programs. Additional studies investigating factors that predispose infants and Aboriginal peoples would also be beneficial

    Quantifying the Spatial Dimension of Dengue Virus Epidemic Spread within a Tropical Urban Environment

    Get PDF
    Global trends in population growth and human redistribution and movement have reshaped the map of dengue transmission risk, exposing a significant proportion of the world's population to the threat of dengue epidemics. Knowledge on the relative contribution of vector and human movement to the widespread and explosive nature of dengue epidemic spread within an urban environment is limited. By analyzing a very detailed dataset of a dengue epidemic that affected the Australian city of Cairns we performed a comprehensive quantification of the spatio-temporal dimensions of dengue virus epidemic transmission and propagation within a complex urban environment. Space and space-time analysis and models allowed derivation of detailed information on the pattern of introduction and epidemic spread of dengue infection within the urban space. We foresee that some of the results and recommendations derived from our study may also be applicable to many other areas currently affected or potentially subject to dengue epidemics

    A Secure Semi-Field System for the Study of Aedes aegypti

    Get PDF
    Novel vector control strategies require validation in the field before they can be widely accepted. Semi-field system (SFS) containment facilities are an intermediate step between laboratory and field trials that offer a safe, controlled environment that replicates field conditions. We developed a SFS laboratory and cage complex that simulates an urban house and yard, which is the primary habitat for Aedes aegypti, the mosquito vector of dengue in Cairns Australia. The SFS consists of a Quarantine Insectary Level-2 (QIC-2) laboratory, containing 3 constant temperature rooms, that is connected to two QIS-2 cages for housing released mosquitoes. Each cage contains the understory of a “Queenslander” timber house and associated yard. An automated air conditioning system keeps temperature and humidity to within 1°C and 5% RH of ambient conditions, respectively. Survival of released A. aegypti was high, especially for females. We are currently using the SFS to investigate the invasion of strains of Wolbachia within populations of A. aegypti

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate

    Genotype V Japanese Encephalitis Virus Is Emerging

    Get PDF
    Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I–IV. It reveals low similarity between XZ0934 and genotype I–IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic
    corecore