38 research outputs found

    Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria

    Get PDF
    Traditionally, programmed cell death (PCD) is associated with eukaryotic multicellular organisms. However, recently, PCD systems have also been observed in bacteria. Here we review recent research on two kinds of genetic programs that promote bacterial cell death. The first is mediated by mazEF, a toxin–antitoxin module found in the chromosomes of many kinds of bacteria, and mainly studied in Escherichia coli. The second program is found in Bacillus subtilis, in which the skf and sdp operons mediate the death of a subpopulation of sporulating bacterial cells. We relate these two bacterial PCD systems to the ways in which bacterial populations resemble multicellular organisms

    The Communication Factor EDF and the Toxin–Antitoxin Module mazEF Determine the Mode of Action of Antibiotics

    Get PDF
    It was recently reported that the production of Reactive Oxygen Species (ROS) is a common mechanism of cell death induced by bactericidal antibiotics. Here we show that triggering the Escherichia coli chromosomal toxin–antitoxin system mazEF is an additional determinant in the mode of action of some antibiotics. We treated E. coli cultures by antibiotics belonging to one of two groups: (i) Inhibitors of transcription and/or translation, and (ii) DNA damaging. We found that antibiotics of both groups caused: (i) mazEF-mediated cell death, and (ii) the production of ROS through MazF action. However, only antibiotics of the first group caused mazEF-mediated cell death that is ROS-dependent, whereas those of the second group caused mazEF-mediated cell death by an ROS-independent pathway. Furthermore, our results showed that the mode of action of antibiotics was determined by the ability of E. coli cells to communicate through the signaling molecule Extracellular Death Factor (EDF) participating in mazEF induction

    Escherichia coli MazF Leads to the Simultaneous Selective Synthesis of Both “Death Proteins” and “Survival Proteins”

    Get PDF
    The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful

    A Differential Effect of E. coli Toxin-Antitoxin Systems on Cell Death in Liquid Media and Biofilm Formation

    Get PDF
    Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism

    UGA suppression by normal tRNA TrP

    No full text

    MazF-Mediated Cell Death in Escherichia coli: a Point of No Return

    No full text
    mazEF is a stress-induced toxin-antitoxin module, located on the chromosome of Escherichia coli, that we have previously described to be responsible for programmed cell death in E. coli. mazF specifies a stable toxin, and mazE specifies a labile antitoxin. Recently, it was reported that inhibition of translation and cell growth by ectopic overexpression of the toxin MazF can be reversed by the action of the antitoxin MazE ectopically overexpressed at a later time. Based on these results, it was suggested that rather than inducing cell death, mazF induces a state of reversible bacteriostasis (K. Pederson, S. K. Christensen, and K. Gerdes, Mol. Microbiol. 45:501-510, 2002). Using a similar ectopic overexpression system, we show here that overexpression of MazE could reverse MazF lethality only over a short window of time. The size of that window depended on the nature of the medium in which MazF was overexpressed. Thus, we found “a point of no return,” which occurred sooner in minimal M9 medium than it did in the rich Luria-Bertani medium. We also describe a state in which the effect of MazF on translation could be separated from its effect on cell death: MazE overproduction could completely reverse the inhibitory effect of MazF on translation, while not affecting the bacteriocidic effect of MazF at all. Our results reported here support our view that the mazEF module mediates cell death and is part of a programmed cell death network

    Induction of Escherichia coli Chromosomal mazEF by Stressful Conditions Causes an Irreversible Loss of Viability

    No full text
    mazEF is a stress-induced toxin-antitoxin module located on the chromosomes of many bacteria. Here we induced Escherichia coli chromosomal mazEF by various stressful conditions. We found an irreversible loss of viability, which is the basic characteristic of cell death. These results further support our previous conclusion that E. coli mazEF mediation of cell death is not a passive process, but an active and genetically “programmed” death response

    The Stationary-Phase Sigma Factor σS Is Responsible for the Resistance of Escherichia coli Stationary-Phase Cells to mazEF-Mediated Cell Death▿

    No full text
    Escherichia coli mazEF is a toxin-antitoxin gene module that mediates cell death during exponential-phase cellular growth through either reactive oxygen species (ROS)-dependent or ROS-independent pathways. Here, we found that the stationary-phase sigma factor σS was responsible for the resistance to mazEF-mediated cell death during stationary growth phase. Deletion of rpoS, the gene encoding σS from the bacterial chromosome, permitted mazEF-mediated cell death during stationary growth phase
    corecore