7 research outputs found

    Biomarkers of Inflammation and Intestinal Mucosa Pathology in Celiac Disease

    No full text
    Celiac disease (CD) is a chronic small intestinal immune-mediated enteropathy triggered by gluten. The only currently available treatment is complying with a lifelong gluten-free diet, which should not be commenced before a CD diagnosis has been established by diagnostic test results (including histopathologic assessment of small intestinal biopsies and CD-specific antibody levels). This makes diagnostic swiftness and accuracy important. In cases with low CD-specific antibody levels and/or low-grade intestinal injuries the diagnosis can be difficult to establish. The main objective of this thesis was to complement and improve CD diagnostics by identifying and implementing new biomarkers, mainly based on gene expression, in small intestinal biopsies and blood. In paper I, genes were selected to reflect villous height, crypt elongation, immune response, and epithelial integrity. The results showed that a subset of those genes could discriminate active CD mucosa from mucosa without CD-related changes and grade the intestinal injury. In paper III, an unbiased investigation of gene expression in CD mucosa was performed using transcriptome analysis. Active CD and non-CD mucosa showed differential expression in a subset of genes, and some were differentially expressed in CD mucosa before histopathologic assessment could confirm intestinal alterations compatible with a CD diagnosis. Gene set analysis revealed that there are many biological processes affected in CD mucosa, including those associated with immune response, microbial infection, phagocytosis, intestinal barrier function, metabolism, and transportation. In parallel, gene expression was investigated in stabilised whole blood. Blood is a more accessible sampling material than intestinal biopsies, and stabilised blood is suitable for routine diagnostics since transcript levels are preserved at sampling. In paper II, expressions from a selection of genes were quantified in stabilised whole blood (RNA) and/or plasma (protein). Three genes with differential expression in CD were identified. Compared to the CD-specific autoantibodies against tissue transglutaminase (anti-TG2) alone, the addition of the information from the new potential markers resulted in a nonsignificant contribution to the diagnostic capacity of anti-TG2. An unbiased investigation using transcriptome analysis (paper IV) showed that gene level expression differences in stabilised whole blood were small between CD and non-CD. However, expression differences on a gene set level could potentially be used in CD diagnostics. CD-associated biological processes suggested by the results included a pro-inflammatory response, negative regulation of viral replication, proliferation, differentiation, cell migration, cell survival, translation, and haemostasis. Expression analysis using real-time polymerase chain reaction (PCR) is easy to perform, with instrumentation available at most clinical laboratories. Although select solitary biomarkers could be very useful in the diagnosis of CD, basing gene expression profiles on pathway information instead of single genes might also disclose disease heterogeneity between patients and add stability to a diagnostic method based on gene expressions. In conclusion, the results of this work demonstrate that analysing the expression of a few small intestinal genes can complement CD diagnostics. The application of gene expression analysis in cases with minor small intestine histopathological changes shows promising results, but needs further investigations. Additionally, gene expressions in other inflammatory diseases of the small intestine need to be investigated and compared with CD to complete the picture. Moreover, the findings from this work give clues about the biological contexts in which CD resides, and the potential of gene expression in blood at a gene set level is of interest for further investigations

    Characterisation of gene and pathway expression in stabilised blood from children with coeliac disease

    No full text
    INTRODUCTION: A coeliac disease (CD) diagnosis is likely in children with levels of tissue transglutaminase autoantibodies (anti-TG2) &gt;10 times the upper reference value, whereas children with lower anti-TG2 levels need an intestinal biopsy to confirm or rule out CD. A blood sample is easier to obtain than an intestinal biopsy sample, and stabilised blood is suitable for routine diagnostics because transcript levels are preserved at sampling. Therefore, we investigated gene expression in stabilised whole blood to explore the possibility of gene expression-based diagnostics for the diagnosis and follow-up of CD. DESIGN: We performed RNA sequencing of stabilised whole blood from active CD cases (n=10), non-CD cases (n=10), and treated CD cases on a gluten-free diet (n=10) to identify diagnostic CD biomarkers and pathways involved in CD pathogenesis. RESULTS: No single gene was differentially expressed between the sample groups. However, by using gene set enrichment analysis (GSEA), significantly differentially expressed pathways were identified in active CD, and these pathways involved the inflammatory response, negative regulation of viral replication, translation, as well as cell proliferation, differentiation, migration, and survival. The results indicate that there are differences in pathway regulation in CD, which could be used for diagnostic purposes. Comparison between GSEA results based on stabilised blood with GSEA results based on small intestinal biopsies revealed that type I interferon response, defence response to virus, and negative regulation of viral replication were identified as pathways common to both tissues. CONCLUSIONS: Stabilised whole blood is not a suitable sample for clinical diagnostics of CD based on single genes. However, diagnostics based on a pathway-focused gene expression panel may be feasible, but requires further investigation.Funding agencies: Futurum-the Academy for Health and Care, Region Jonkoping County; Medical Research Council of Southeast Sweden</p

    Celiac disease biomarkers identified by transcriptome analysis of small intestinal biopsies

    No full text
    Establishing a celiac disease (CD) diagnosis can be difficult, such as when CD-specific antibody levels are just above cutoff or when small intestinal biopsies show low-grade injuries. To investigate the biological pathways involved in CD and select potential biomarkers to aid in CD diagnosis, RNA sequencing of duodenal biopsies from subjects with either confirmed Active CD (n=20) or without any signs of CD (n=20) was performed. Gene enrichment and pathway analysis highlighted contexts, such as immune response, microbial infection, phagocytosis, intestinal barrier function, metabolism, and transportation. Twenty-nine potential CD biomarkers were selected based on differential expression and biological context. The biomarkers were validated by real-time polymerase chain reaction of eight RNA sequencing study subjects, and further investigated using an independent study group (n=43) consisting of subjects not affected by CD, with a clear diagnosis of CD on either a gluten-containing or a gluten-free diet, or with low-grade intestinal injury. Selected biomarkers were able to classify subjects with clear CD/non-CD status, and a subset of the biomarkers (CXCL10, GBP5, IFI27, IFNG, and UBD) showed differential expression in biopsies from subjects with no or low-grade intestinal injury that received a CD diagnosis based on biopsies taken at a later time point. A large number of pathways are involved in CD pathogenesis, and gene expression is affected in CD mucosa already in low-grade intestinal injuries. RNA sequencing of low-grade intestinal injuries might discover pathways and biomarkers involved in early stages of CD pathogenesis.Funding Agencies|Futurum-the Academy for Health and Care, Region Jonkoping County; Medical Research Council of Southeast Sweden; National Genomics Infrastructure - Swedish Research Council</p

    Potential blood-based markers of celiac disease

    No full text
    Background: Blood-based diagnostics has the potential to simplify the process of diagnosing celiac disease (CD). Although high levels of autoantibodies against tissue transglutaminase (anti-TG2) are strongly indicative of active CD, several other scenarios involve a need for additional blood-based CD markers. Methods: We investigated the levels of messenger RNA (mRNA) in whole blood (n = 49) and protein in plasma (n = 22) from cases with active CD (n = 20), with confirmed CD and normalized histology (n = 15), and without a CD diagnosis (n = 14). Group differences were analyzed using Kruskal-Wallis one-way analysis of variance by ranks. We also investigated correlations between levels of potential markers, histopathology according to the modified Marsh scale, and CD risk gradient based on HLA type, using Spearman rank correlation. The relation between HLA-DQ2 gene dose effect and the expression levels of selected blood-based markers was investigated using the Mann-Whitney U test. Finally, the diagnostic performance of anti-TG2, potential blood-based CD markers, and logistic regression models of combined markers was evaluated using receiver operating characteristic (ROC) curve analysis. Results: CXCL11 protein levels and TNFRSF9 and TNFSF13B mRNA levels were identified as potential CD markers. These are all affected by or involved in the regulation of the NF-kappa B complex. CXCL11 protein levels and IL21 and IL15 mRNA levels were correlated with histopathology according to the modified Marsh scale, as were the established CD markers. HLA genotype risk and HLA-DQ2 gene dose effect did not show any significant relations with either the potential CD markers or the established CD markers. ROC curve analysis revealed a slight, non-significant increase in the area under the curve for the combined use of anti-TG2 and different constellations of potential blood-based CD markers compared to anti-TG2 alone. Conclusions: The CD markers identified in this study further emphasize the significance of components related to NF-kappa B regulation in relation to CD. However, the relevance of CXCL11, TNFSF13B, TNFRSF9, and other NF-kappa B interacting proteins recognized by pathway analysis, needs to be further investigated in relation to diagnosis and monitoring of CD.Funding Agencies|Futurum - the Academy for Healthcare; Jonkoping County Council; Medical Research Council of Southeast Sweden</p

    Gene Expression Profiling of Duodenal Biopsies Discriminates Celiac Disease Mucosa From Normal Mucosa

    No full text
    Celiac disease (CD) is identified by histopathologic changes in the small intestine which normalize during a gluten-free diet. The histopathologic assessment of duodenal biopsies is usually routine but can be difficult. This study investigated gene expression profiling as a diagnostic tool. A total of 109 genes were selected to reflect alterations in crypt-villi architecture, inflammatory response, and intestinal permeability and were examined for differential expression in normal mucosa compared with CD mucosa in pediatric patients. Biopsies were classified using discriminant analysis of gene expression. Fifty genes were differentially expressed, of which eight (APOC3, CYP3A4, OCLN, MAD2L1, MKI67, CXCL11, IL17A, and CTLA4) discriminated normal mucosa from CD mucosa without classification errors using leave-one-out cross-validation (n = 39) and identified the degree of mucosal damage. Validation using an independent set of biopsies (n = 27) resulted in four discrepant cases. Biopsies from two of these cases showed a patchy distribution of lesions, indicating that discriminant analysis based on single biopsies failed to identify CD mucosa. In the other two cases, serology support class according to discriminant analysis and histologic specimens were judged suboptimal but assessable. Gene expression profiling shows promise as a diagnostic tool and for follow-up of CD, but further evaluation is needed
    corecore