20 research outputs found

    Can Daytime Napping Assist the Process of Skills Acquisition After Stroke?

    Get PDF
    Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10–20 min), or (iii) long nap (50–80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains

    Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Get PDF
    Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico-striato-thalamo-cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS). GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA) with basal ganglia (pre-SMA-putamen, SMA-putamen) and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity

    Dynamics of Water Diffusion Changes in Different Tissue Compartments From Acute to Chronic Stroke—A Serial Diffusion Tensor Imaging Study

    Get PDF
    Background and Purpose: The immediate decrease of the apparent diffusion coefficient (ADC) is the main characteristic change of water diffusion in acute ischemic stroke. There is only limited information on the time course of diffusion parameters in different tissue compartments of cerebral ischemia.Materials and Methods: In a longitudinal study, we examined 21 patients with acute ischemic stroke by diffusion tensor imaging within 5 h after symptom onset, 3 h later, 2 days, and 1 month after symptom onset. Acute diffusion lesion and the fluid-attenuated inversion recovery (FLAIR) after 2 days were used as volumes of interest to define persistent core, lesion growth, and reversible acute diffusion lesion. For all diffusion parameters ratios between the stroke lesion VOIs and the mirror VOIs were calculated for each time point. ADC ratio, fractional anisotropy ratios, and eigenvalues ratios were measured in these volumes of interest and in contralateral mirror regions at each time points.Results: In the persistent core, ADC ratio (0.772) and all eigenvalues ratios were reduced on admission up to 1 day after stroke and increased after 1 month (ADC ratio 1.067). Within the region of infarct growth time course of diffusion parameter changes was similar, but delayed. In the brain area with reversible diffusion lesion, a partial normalization of diffusion parameters over the time was observed, while after 1 month diffusion parameters did not show the signature of healthy brain tissue. There were significantly different trends for all parameters over time between the three tissue compartments.Conclusion: Diffusion tensor imaging displays characteristic changes of water diffusion in different tissue compartments over time in acute ischemic stroke. Even regions with reversible diffusion lesion show diffusion signatures of persisting tissue alterations

    Can Daytime Napping Assist the Process of Skills Acquisition After Stroke?

    No full text
    Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10-20 min), or (iii) long nap (50-80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains

    White matter integrity of premotor–motor connections is associated with motor output in chronic stroke patients

    Get PDF
    Corticocortical functional interactions between the primary motor cortex (M1) and secondary motor areas, such as the dorsal (PMd) and ventral (PMv) premotor cortices and the supplementary motor area (SMA) are relevant for residual motor output after subcortical stroke. We hypothesized that the microstructural integrity of the underlying white matter tracts also plays a role in preserved motor output. Using diffusion-tensor imaging we aimed at (i) reconstructing individual probable intrahemispheric connections between M1 and the three secondary areas (PMd, PMv, SMA) and (ii) examining the extent to which the tract-related microstructural integrity correlates with residual motor output. The microstructural integrity of the tract connecting ipsilesional M1 and PMd was significantly associated with motor output (R = 0.78, P = 0.02). The present results support the view that ipsilesional secondary motor areas such as the PMd might support M1 via corticocortical connections to generate motor output after stroke

    Comprehensive analysis of early fractional anisotropy changes in acute ischemic stroke

    No full text
    <div><p>Background and purpose</p><p>Cerebral ischemia leads to a rapid decrease of the apparent diffusion coefficient. For fractional anisotropy both increase and decrease have been reported in acute ischemic stroke. Aim of this study was to characterize early water diffusion changes in a homogenous group of acute stroke patients and to clarify the issue of early fractional anisotropy changes and their relation to time from symptom onset.</p><p>Methods</p><p>MRI data of patients with acute ischemic stroke examined by diffusion tensor imaging within 8h after symptom were analyzed. We calculated fractional anisotropy, eigenvalues and the isotropic and anisotropic components of the diffusion tensor. The values were calculated as ratios between the ischemic lesion and a mirror region in the unaffected side and correlated with clinical parameters.</p><p>Results</p><p>We included 63 patients: 49% female, mean age 69 ± 14 years, median NIHSS on admission 9 (IQR 4–14). For the whole sample, mean fractional anisotropy was increased (ratio: 1.083 ± 0.168), while all other diffusion parameters were decreased. Both the isotropic and anisotropic component of the diffusion tensor were decreased with a more pronounced decrease of the isotropic component (ratios: isotropic = 0.730 ± 0.106, anisotropic = 0.788 ± 0.127; p<0.001). There was no correlation of fractional anisotropy with time from symptom onset. Looking at individual patients, fractional anisotropy was increased in 70%. There were no differences in clinical characteristics between patients with increased and decreased fractional anisotropy.</p><p>Conclusion</p><p>Fractional anisotropy increase in acute stroke results from a more pronounced decrease of the isotropic diffusion component and is not related to time from symptom onset. Thus, fractional anisotropy is not helpful as a surrogate marker of lesion age in the very first hours of stroke.</p></div
    corecore