5,022 research outputs found
Particle Impact Analysis of Bulk Powder During Pneumatic Conveyance
Fragmentation of powders during transportation is a common problem for manufacturers of food and pharmaceutical products. We illustrate that the primary cause of breakage is due to inter-particle collisions, rather than particle-wall impacts, and provide a statistical mechanics model giving the number of collisions resulting in fragmentation
Conceptualisation of an Efficient Particle-Based Simulation of a Twin-Screw Granulator
Discrete Element Method (DEM) simulations have the potential to provide particle-scale understanding of twin-screw granulators. This is difficult to obtain experimentally because of the closed, tightly confined geometry. An essential prerequisite for successful DEM modelling of a twin-screw granulator is making the simulations tractable, i.e., reducing the significant computational cost while retaining the key physics. Four methods are evaluated in this paper to achieve this goal: (i) develop reduced-scale periodic simulations to reduce the number of particles; (ii) further reduce this number by scaling particle sizes appropriately; (iii) adopt an adhesive, elasto-plastic contact model to capture the effect of the liquid binder rather than fluid coupling; (iv) identify the subset of model parameters that are influential for calibration. All DEM simulations considered a GEA ConsiGma⹠1 twin-screw granulator with a 60° rearward configuration for kneading elements. Periodic simulations yielded similar results to a full-scale simulation at significantly reduced computational cost. If the level of cohesion in the contact model is calibrated using laboratory testing, valid results can be obtained without fluid coupling. Friction between granules and the internal surfaces of the granulator is a very influential parameter because the response of this system is dominated by interactions with the geometry
From âotherâ to involved: User involvement in research: An emerging paradigm
This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 The Author(s).
This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.This article explores the issue of âotheringâ service users and the role that involving them, particularly in social policy and social work research may play in reducing this. It takes, as its starting point, the concept of âsocial exclusionâ, which has developed in Europe and the marginal role that those who have been included in this construct have played in its development and the damaging effects this may have. The article explores service user involvement in research and is itself written from a service user perspective. It pays particular attention to the ideological, practical, theoretical, ethical and methodological issues that such user involvement may raise for research. It examines problems that both research and user involvement may give rise to and also considers developments internationally to involve service users/subjects of research, highlighting some of the possible implications and gains of engaging service user knowledge in research and the need for this to be evaluated
Concreteness and word production
Two experiments are reported that investigated the effect of concreteness on the ability to generate words to fit sentence contexts. When participants attempted to retrieve words from dictionary definitions in Experiment 1, abstract words were associated with more omissions and more alternates than were concrete words. These findings are consistent with the view that the semantic-lexical weights in the word production system are weaker for abstract than for concrete words. We found no evidence that greater competition from semantic neighbors was an additional reason why abstract words were harder to produce. Participants also reported more positive tip-of-the-tongue states (TOTs) when attempting to produce abstract words from their definitions, consistent with more phonological retrieval problems for abstract than for concrete words. In Experiment 2, participants attempted to generate words to fit into a sentence that described a specific event. The difference between the numbers of abstract and concrete words recalled was significantly smaller in the event condition than in the definition condition, and evidence no longer emerged of greater phonological retrieval failure for abstract words. Overall, the results are consistent with the view that the semantic-lexical weights, but not the lexical-phonological weights, are weaker for abstract than for concrete words in the word production system. © 2012 Psychonomic Society, Inc
Analysis of lower limb internal kinetics and electromyography in elite race walking.
The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles
Historical wealth accounts for Britain : progress and puzzles in measuring the sustainability of economic growth
We thank the Leverhulme Trust for funding this research under the project âHistory and the Futureâ.Estimates of Britain's comprehensive wealth are reported for the period 1760-2000. They include measures of produced, natural, and human capital, and illustrate the changing composition of Britain's assets over this time period. We show how genuine savings, GS (a year-on-year measure of the change in total capital and a claimed indicator of sustainable development) has evolved over time. Changes in total wealth are compared to alternative, investment-based measures of GS, including variants augmented with the value of exogenous technology. Additionally, the possible effects of population change on wealth, and the implications of including carbon-dioxide emissions in natural capital are considered.PostprintPeer reviewe
A tandem evolutionary algorithm for identifying causal rules from complex data
We propose a new evolutionary approach for discovering causal rules in complex classification problems from batch data. Key aspects include (a) the use of a hypergeometric probability mass function as a principled statistic for assessing fitness that quantifies the probability that the observed association between a given clause and target class is due to chance, taking into account the size of the dataset, the amount of missing data, and the distribution of outcome categories, (b) tandem age-layered evolutionary algorithms for evolving parsimonious archives of conjunctive clauses, and disjunctions of these conjunctions, each of which have probabilistically significant associations with outcome classes, and (c) separate archive bins for clauses of different orders, with dynamically adjusted order-specific thresholds. The method is validated on majority-on and multiplexer benchmark problems exhibiting various combinations of heterogeneity, epistasis, overlap, noise in class associations, missing data, extraneous features, and imbalanced classes. We also validate on a more realistic synthetic genome dataset with heterogeneity, epistasis, extraneous features, and noise. In all synthetic epistatic benchmarks, we consistently recover the true causal rule sets used to generate the data. Finally, we discuss an application to a complex real-world survey dataset designed to inform possible ecohealth interventions for Chagas disease
Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.
Willows (Salix spp.) are important biomass crops due to their ability to grow rapidly with low fertilizer inputs and ease of cultivation in short-rotation coppice cycles. They are relatively undomesticated and highly diverse, but functional testing to identify useful allelic variation is time-consuming in trees and transformation is not yet possible in willow. Arabidopsis is heralded as a model plant from which knowledge can be transferred to advance the improvement of less tractable species. Here, knowledge and methodologies from Arabidopsis were successfully used to identify a gene influencing stem number in coppiced willows, a complex trait of key biological and industrial relevance. The strigolactone-related More AXillary growth (MAX) genes were considered candidates due to their role in shoot branching. We previously demonstrated that willow and Arabidopsis show similar response to strigolactone and that transformation rescue of Arabidopsis max mutants with willow genes could be used to detect allelic differences. Here, this approach was used to screen 45 SxMAX1, SxMAX2, SxMAX3 and SxMAX4 alleles cloned from 15 parents of 11 mapping populations varying in shoot-branching traits. Single-nucleotide polymorphism (SNP) frequencies were locus dependent, ranging from 29.2 to 74.3 polymorphic sites per kb. SxMAX alleles were 98%-99% conserved at the amino acid level, but different protein products varying in their ability to rescue Arabidopsis max mutants were identified. One poor rescuing allele, SxMAX4D, segregated in a willow mapping population where its presence was associated with increased shoot resprouting after coppicing and colocated with a QTL for this trait
- âŠ