39 research outputs found

    Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots.

    Get PDF
    Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed

    Geminivirus Infection Up-Regulates the Expression of Two Arabidopsis Protein Kinases Related to Yeast SNF1- and Mammalian AMPK-Activating Kinases

    No full text
    Geminivirus Rep-interacting kinase 1 (GRIK1) and GRIK2 constitute a small protein kinase family in Arabidopsis (Arabidopsis thaliana). An earlier study showed that a truncated version of GRIK1 binds to the geminivirus replication protein AL1. We show here both full-length GRIK1 and GRIK2 interact with AL1 in yeast two-hybrid studies. Using specific antibodies, we showed that both Arabidopsis kinases are elevated in infected leaves. Immunoblot analysis of healthy plants revealed that GRIK1 and GRIK2 are highest in young leaf and floral tissues and low or undetectable in mature tissues. Immunohistochemical staining showed that the kinases accumulate in the shoot apical meristem, leaf primordium, and emerging petiole. Unlike the protein patterns, GRIK1 and GRIK2 transcript levels only show a small increase during infection and do not change significantly during development. Treating healthy seedlings and infected leaves with the proteasome inhibitor MG132 resulted in higher GRIK1 and GRIK2 protein levels, whereas treatment with the translation inhibitor cycloheximide reduced both kinases, demonstrating that their accumulation is modulated by posttranscriptional processes. Phylogenetic comparisons indicated that GRIK1, GRIK2, and related kinases from Medicago truncatula and rice (Oryza sativa) are most similar to the yeast kinases PAK1, TOS3, and ELM1 and the mammalian kinase CaMKK, which activate the yeast kinase SNF1 and its mammalian homolog AMPK, respectively. Complementation studies using a PAK1/TOS3/ELM1 triple mutant showed that GRIK1 and GRIK2 can functionally replace the yeast kinases, suggesting that the Arabidopsis kinases mediate one or more processes during early plant development and geminivirus infection by activating SNF1-related kinases

    A Geminivirus Replication Protein Interacts with a Protein Kinase and a Motor Protein That Display Different Expression Patterns during Plant Development and Infection

    No full text
    The geminivirus protein AL1 initiates viral DNA replication, regulates its own expression, and induces plant gene transcription. To better understand how AL1 interacts with host proteins during these processes, we used yeast two-hybrid library screening and a baculovirus protein interaction system to identify plant proteins that interact with AL1. These studies identified a Ser/Thr kinase, a kinesin, and histone H3 as AL1 partners. The kinase is autophosphorylated and can phosphorylate common kinase substrates in vitro. The kinesin is phosphorylated in insect cells by a cyclin-dependent kinase. Immunostaining of Nicotiana benthamiana and Arabidopsis showed that kinase protein levels and subcellular location are regulated during plant development and geminivirus infection. By contrast, the kinesin is ubiquitous even though it is associated with the spindle apparatus in mitotic cells. Together, our results establish that AL1 interacts with host proteins involved in plant cell division and development. Possible functions of these host factors in healthy and geminivirus-infected plants are discussed

    Host DNA Replication Is Induced by Geminivirus Infection of Differentiated Plant Cells

    No full text
    The geminivirus Tomato golden mosaic virus (TGMV) replicates in differentiated plant cells using host DNA synthesis machinery. We used 5-bromo-2-deoxyuridine (BrdU) incorporation to examine DNA synthesis directly in infected Nicotiana benthamiana plants to determine if viral reprogramming of host replication controls had an impact on host DNA replication. Immunoblot analysis revealed that up to 17-fold more BrdU was incorporated into chromosomal DNA of TGMV-infected versus mock-infected, similarly treated healthy leaves. Colocalization studies of viral DNA and BrdU demonstrated that BrdU incorporation was specific to infected cells and was associated with both host and viral DNA. TGMV and host DNA synthesis were inhibited differentially by aphidicolin but were equally sensitive to hydroxyurea. Short BrdU labeling times resulted in some infected cells showing punctate foci associated with host DNA. Longer periods showed BrdU label uniformly throughout host DNA, some of which showed condensed chromatin, only in infected nuclei. By contrast, BrdU associated with viral DNA was centralized and showed uniform, compartmentalized labeling. Our results demonstrate that chromosomal DNA is replicated in TGMV-infected cells

    Arabidopsis Protein Kinases GRIK1 and GRIK2 Specifically Activate SnRK1 by Phosphorylating Its Activation Loop1[W][OA]

    No full text
    SNF1-related kinases (SnRK1s) play central roles in coordinating energy balance and nutrient metabolism in plants. SNF1 and AMPK, the SnRK1 homologs in budding yeast (Saccharomyces cerevisiae) and mammals, are activated by phosphorylation of conserved threonine residues in their activation loops. Arabidopsis (Arabidopsis thaliana) GRIK1 and GRIK2, which were first characterized as geminivirus Rep interacting kinases, are phylogenetically related to SNF1 and AMPK activating kinases. In this study, we used recombinant proteins produced in bacteria to show that both GRIKs specifically bind to the SnRK1 catalytic subunit and phosphorylate the equivalent threonine residue in its activation loop in vitro. GRIK-mediated phosphorylation increased SnRK1 kinase activity in autophosphorylation and peptide substrate assays. These data, together with earlier observations that GRIKs could complement yeast mutants lacking SNF1 activation activities, established that the GRIKs are SnRK1 activating kinases. Given that the GRIK proteins only accumulate in young tissues and geminivirus-infected mature leaves, the GRIK-SnRK1 cascade may function in a developmentally regulated fashion and coordinate the unique metabolic requirements of rapidly growing cells and geminivirus-infected cells that have been induced to reenter the cell cycle
    corecore