453 research outputs found

    Assessing the potential impact of environmental land management schemes on emergent infection disease risks

    Full text link
    Financial incentives are provided by governments to encourage the plantation of new woodland to increase habitat, biodiversity, carbon sequestration, and other economic benefits for landowners. Whilst these are largely positive effects, it is worth considering that greater biodiversity and presence of wildlife species in proximity to agricultural holdings may pose a risk of disease transmission between wildlife and livestock. Wildlife transmission and the provision of a reservoir for infectious disease is particularly important in the transmission dynamics of bovine tuberculosis. In this paper we develop an economic model for changing land use due to forestry subsidies. We use this asses the impact on wild deer populations in the newly created woodland areas and the emergent infectious disease risk arising from the proximity of new and existing wild deer populations and existing cattle holdings. We consider an area in the South-West of Scotland, having existing woodland, deer populations, and extensive and diverse cattle farm holdings. In this area we find that, with a varying level of subsidy and plausible new woodland creation, the contact risk between areas of wild deer and cattle increases between 26% and 35% over the contact risk present with zero subsidy. This model provides a foundation for extending to larger regions and for examining potential risk mitigation strategies, for example the targeting of subsidy in low risk areas or provisioning for buffer zones between woodland and agricultural holdings

    The effect of forest management options on forest resilience to pathogens

    Get PDF
    This work is from the project titled Modeling economic impact and strategies to increase resilience against tree disease outbreaks. This is one of seven projects in the Tree Health and Plant Biosecurity Initiative (phase 2) funded by BBSRC, Defra, ESRC, Forestry Commission, NERC, and Scottish Government. The Rural & Environment Science & Analytical Services Division of the Scottish Government provided supporting capacity to MR for final editing of the paper.Invasive pathogens threaten the ability of forests globally to produce a range of valuable ecosystem services over time. However, the ability to detect such pathogen invasions—and thus to produce appropriate and timely management responses—is relatively low. We argue that a promising approach is to plan and manage forests in a way that increases their resilience to invasive pathogens not yet present or ubiquitous in the forest. This paper is based on a systematic search and critical review of empirical evidence of the effect of a wide range of forest management options on the primary and secondary infection rates of forest pathogens, and on subsequent forest recovery. Our goals are to inform forest management decision making to increase forest resilience, and to identify the most important evidence gaps for future research. The management options for which there is the strongest evidence that they increase forest resilience to pathogens are: reduced forest connectivity, removal or treatment of inoculum sources such as cut stumps, reduced tree density, removal of diseased trees and increased tree species diversity. In all cases the effect of these options on infection dynamics differs greatly amongst tree and pathogen species and between forest environments. However, the lack of consistent effects of silvicultural systems or of thinning, pruning or coppicing treatments is notable. There is also a lack of evidence of how the effects of treatments are influenced by the scale at which they are applied, e.g., the mixture of tree species. An overall conclusion is that forest managers often need to trade-off increased resilience to tree pathogens against other benefits obtained from forests.Publisher PDFPeer reviewe

    Strength and Comprehensiveness of School Wellness Policies in Southeastern US School Districts

    Get PDF
    In 2004, Congress passed legislation mandating that all public school districts participating in federal school meal programs develop a school wellness policy (SWP) to direct efforts related to nutrition and physical activity. We examined the extent to which SWPs varied in comprehensiveness and strength in a representative sample of school districts in the southeastern United States, the area of the country with the highest rates of childhood obesity

    Personality and economic choices

    Get PDF
    There is substantial variation in individual preferences for public goods, yet much of that variation remains poorly understood. However, simple measures of personality can help to explain economic values and choices in a systematic way. In this paper, we examine the effects of personality on individual economic choices over public environmental goods. Based on three datasets from three separate stated preference studies, we use a hybrid choice econometric framework to examine the effects of personality on preferences for the status quo, changes in environmental quality, and costs of investing in environmental improvements. We find effects that are consistent across all datasets. Personality, a stable feature of an individual's character that is simple to measure, enriches explanations of why the demand for environmental goods varies across people, provides an indication of how different people are likely to react to the introduction of environmental policies, and explains substantial differences in Willingness to Pay

    The effect of forest management options on forest resilience to pathogens

    Get PDF
    This work is from the project titled Modeling economic impact and strategies to increase resilience against tree disease outbreaks. This is one of seven projects in the Tree Health and Plant Biosecurity Initiative (phase 2) funded by BBSRC, Defra, ESRC, Forestry Commission, NERC, and Scottish Government. The Rural & Environment Science & Analytical Services Division of the Scottish Government provided supporting capacity to MR for final editing of the paper.Invasive pathogens threaten the ability of forests globally to produce a range of valuable ecosystem services over time. However, the ability to detect such pathogen invasions—and thus to produce appropriate and timely management responses—is relatively low. We argue that a promising approach is to plan and manage forests in a way that increases their resilience to invasive pathogens not yet present or ubiquitous in the forest. This paper is based on a systematic search and critical review of empirical evidence of the effect of a wide range of forest management options on the primary and secondary infection rates of forest pathogens, and on subsequent forest recovery. Our goals are to inform forest management decision making to increase forest resilience, and to identify the most important evidence gaps for future research. The management options for which there is the strongest evidence that they increase forest resilience to pathogens are: reduced forest connectivity, removal or treatment of inoculum sources such as cut stumps, reduced tree density, removal of diseased trees and increased tree species diversity. In all cases the effect of these options on infection dynamics differs greatly amongst tree and pathogen species and between forest environments. However, the lack of consistent effects of silvicultural systems or of thinning, pruning or coppicing treatments is notable. There is also a lack of evidence of how the effects of treatments are influenced by the scale at which they are applied, e.g., the mixture of tree species. An overall conclusion is that forest managers often need to trade-off increased resilience to tree pathogens against other benefits obtained from forests.Publisher PDFPeer reviewe

    Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3), a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for <it>Aedes aegypti </it>mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain</p> <p>Results</p> <p>To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in <it>Aedes aegypti </it>mosquitoes was measured <it>in vivo</it>. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells.</p> <p>Conclusion</p> <p>The invasive DENV3 strain infects and disseminates in <it>Ae. aegypti </it>more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between native and invasive DENV3 strains. Infection dynamics within the vector may have a significant impact on the spread and replacement of dengue virus lineages.</p

    Planting Food or Fuel: Developing an Interdisciplinary Approach to Understanding the Role of Culture in Farmers’ Decisions to Grow Second-Generation Biofuel Feedstock Crops

    Get PDF
    Recent interest in biofuels as an alternative energy source has spurred considerable changes in agricultural practice worldwide. These changes will be more pronounced as second-generation biofuels, such as switch grass, gain prominence; this article examines the cultural factors associated with the decisions U.S. farmers face in targeting crops for fuel production instead of food. Through an interdisciplinary assessment of the dynamics of farmers' behavior, developed herein is a theoretical framework to analyze how farmers grapple with shifting expectations of their function.National Science Foundation EPS-0903806, KU-Transportation Research Institut

    The Unusual Infrared Object HDF-N J123656.3+621322

    Get PDF
    We describe an object in the Hubble Deep Field North with very unusual near-infrared properties. It is readily visible in Hubble Space Telescope NICMOS images at 1.6um and from the ground at 2.2um, but is undetected (with signal-to-noise <~ 2) in very deep WFPC2 and NICMOS data from 0.3 to 1.1um. The f_nu flux density drops by a factor >~ 8.3 (97.7% confidence) from 1.6 to 1.1um. The object is compact but may be slightly resolved in the NICMOS 1.6um image. In a low-resolution, near-infrared spectrogram, we find a possible emission line at 1.643um, but a reobservation at higher spectral resolution failed to confirm the line, leaving its reality in doubt. We consider various hypotheses for the nature of this object. Its colors are unlike those of known galactic stars, except perhaps the most extreme carbon stars or Mira variables with thick circumstellar dust shells. It does not appear to be possible to explain its spectral energy distribution as that of a normal galaxy at any redshift without additional opacity from either dust or intergalactic neutral hydrogen. The colors can be matched by those of a dusty galaxy at z >~ 2, by a maximally old elliptical galaxy at z >~ 3 (perhaps with some additional reddening), or by an object at z >~ 10 whose optical and 1.1um light have been suppressed by the intergalactic medium. Under the latter hypothesis, if the luminosity results from stars and not an AGN, the object would resemble a classical, unobscured protogalaxy, with a star formation rate >~ 100 M_sun/yr. Such UV-bright objects are evidently rare at 2 < z < 12.5, however, with a space density several hundred times lower than that of present-day L* galaxies.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, LaTeX, with 7 figures (8 files); citations & references updated + minor format change

    A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4

    Get PDF
    AbstractAn acceptable live-attenuated dengue virus vaccine candidate should have low potential for transmission by mosquitoes. We have identified and characterized a mutation in dengue virus type 4 (DEN4) that decreases the ability of the virus to infect mosquitoes. A panel of 1248 mutagenized virus clones generated previously by chemical mutagenesis was screened for decreased replication in mosquito C6/36 cells but efficient replication in simian Vero cells. One virus met these criteria and contained a single coding mutation: a C-to-U mutation at nucleotide 7129 resulting in a Pro-to-Leu change in amino acid 101 of the nonstructural 4B gene (NS4B P101L). This mutation results in decreased replication in C6/36 cells relative to wild-type DEN4, decreased infectivity for mosquitoes, enhanced replication in Vero and human HuH-7 cells, and enhanced replication in SCID mice implanted with HuH-7 cells (SCID-HuH-7 mice). A recombinant DEN4 virus (rDEN4) bearing this mutation exhibited the same set of phenotypes. Addition of the NS4B P101L mutation to rDEN4 bearing a 30 nucleotide deletion (Δ30) decreased the ability of the double-mutant virus to infect mosquitoes but increased its ability to replicate in SCID-HuH-7 mice. Although the NS4B P101L mutation decreases infectivity of DEN4 for mosquitoes, its ability to enhance replication in SCID-HuH-7 mice suggests that it might not be advantageous to include this specific mutation in an rDEN4 vaccine. The opposing effects of the NS4B P101L mutation in mosquito and vertebrate systems suggest that the NS4B protein is involved in maintaining the balance between efficient replication in the mosquito vector and the human host
    • …
    corecore