56 research outputs found

    The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML

    Get PDF
    Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations

    Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk

    Get PDF
    Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure

    Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-10-29, rev-recd 2021-04-27, accepted 2021-04-28, pub-electronic 2021-06-04Article version: VoRPublication status: PublishedFunder: Wellcome Trust; Grant(s): 107636/Z/15/Z, 210002/Z/17/ZFunder: UKRI | Biotechnology and Biological Sciences Research Council (BBSRC); Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/R015864/1, BB/M011208/1Funder: UKRI | Medical Research Council (MRC); Id: http://dx.doi.org/10.13039/501100000265; Grant(s): MR/T016043/1Funder: Cancer Research UK (CRUK); Id: http://dx.doi.org/10.13039/501100000289; Grant(s): A27445Funder: NIHR Manchester Biomedical Research Centre; Grant(s): IS‐BRC‐1215‐20007Funder: Breast Cancer Now; Grant(s): MAN‐Q2‐Y4/5Abstract: Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine‐tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling‐dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR‐mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF‐mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers

    Molecular insights into the premature aging disease progeria

    Get PDF

    Neratinib

    No full text

    A Pliable ERα Cistrome Evades Therapy

    No full text
    The transcription factor oestrogen receptor alpha (ERα) has long been targeted for therapeutic benefit in cancer, but drug resistance can emerge through a multitude of mechanisms. A study now reveals how the ERα cistrome can become reprogrammed to confer resistance to tamoxifen in breast cancer
    corecore