407 research outputs found

    Complete Genome Sequence of a Porcine Epidemic Diarrhea Virus Isolated in Belgorod, Russia, in 2008.

    Get PDF
    We identified porcine epidemic diarrhea virus (PEDV) in stool samples from sick piglets in the Belgorod region of Russia. The complete coding genome sequence of 28,295 nucleotides (nt) of PEDV was generated. Compared to a prototype PEDV strain (DR13), an extreme number of mismatches in the S gene were revealed

    Genetic Organization of Acquired Antimicrobial Resistance Genes and Detection of Resistance-Mediating Mutations in a Gallibacterium anatis Isolate from a Calf Suffering from a Respiratory Tract Infection

    Get PDF
    Gallibacterium (G.) anatis isolates associated with respiratory diseases in calves and harboring acquired antimicrobial resistance genes have been described in Belgium. The aim of this study was to analyze the genetic organization of acquired resistance genes in the G. anatis isolate IMT49310 from a German calf suffering from a respiratory tract infection. The isolate was submitted to antimicrobial susceptibility testing, and a closed genome was obtained by a hybrid assembly of Illumina MiSeq short-reads and MinION long-reads. Isolate IMT49310 showed elevated MIC values for macrolides, aminoglycosides, florfenicol, tetracyclines, and trimethoprim/sulfamethoxazole. The acquired resistance genes catA1, floR, aadA1, aadB, aphA1, strA, tet(M), tet(B), erm(B), and sul2 were identified within three resistance gene regions in the genome, some of which were associated with IS elements, such as ISVsa5-like or IS15DII. Furthermore, nucleotide exchanges within the QRDRs of gyrA and parC, resulting in amino acid exchanges S83F and D87A in GyrA and S80I in ParC, were identified. Even if the role in the pathogenesis of respiratory tract infections in cattle needs to be further investigated, the identification of a G. anatis isolate with reduced susceptibility to regularly used antimicrobial agents in cases of fatal bovine respiratory tract infections is worrisome, and such isolates might also act as a reservoir for antimicrobial resistance genes

    Metagenomics for broad and improved parasite detection: a proof-of-concept study using swine faecal samples

    Get PDF
    Efficient and reliable identification of emerging pathogens is crucial for the design and implementation of timely and proportionate control strategies. This is difficult if the pathogen is so far unknown or only distantly related with known pathogens. Diagnostic metagenomics – an undirected, broad and sensitive method for the efficient identification of pathogens – was frequently used for virus and bacteria detection, but seldom applied to parasite identification. Here, metagenomics datasets prepared from swine faeces using an unbiased sample processing approach with RNA serving as starting material were re-analysed with respect to parasite detection. The taxonomic identification tool RIEMS, used for initial detection, provided basic hints on potential pathogens contained in the datasets. The suspected parasites/intestinal protists (Blastocystis, Entamoeba, Iodamoeba, Neobalantidium, Tetratrichomonas) were verified using subsequently applied reference mapping analyses on the base of rRNA sequences. Nearly full-length gene sequences could be extracted from the RNA-derived datasets. In the case of Blastocystis, subtyping was possible with subtype (ST)15 discovered for the first known time in swine faeces. Using RIEMS, some of the suspected candidates turned out to be false-positives caused by the poor status of sequences in publicly available databases. Altogether, 11 different species/STs of parasites/intestinal protists were detected in 34 out of 41 datasets extracted from metagenomics data. The approach operates without any primer bias that typically hampers the analysis of amplicon-based approaches, and allows the detection and taxonomic classification including subtyping of protist and metazoan endobionts (parasites, commensals or mutualists) based on an abundant biomarker, the 18S rRNA. The generic nature of the approach also allows evaluation of interdependencies that induce mutualistic or pathogenic effects that are often not clear for many intestinal protists and perhaps other parasites. Thus, metagenomics has the potential for generic pathogen identification beyond the characterisation of viruses and bacteria when starting from RNA instead of DNA

    Whole-Genome Sequence of the Mycoplasma (Mesomycoplasma) hyorhinis DSM 25591 Type Strain

    Get PDF
    The whole-genome sequence of the type strain Mycoplasma (Mesomycoplasma) hyorhinis DSM 25591 is reported and compared to the available sequences of the corresponding type strains from other strain collections to ascertain conformity. Knowledge of the identity of type strains is of importance for their application in standardized test systems

    Gender and cultural differences in school motivation

    Get PDF
    The purpose of this research was to explore gender differences and cultural differences in school motivation among students from eight culturally diverse groups from Western and non-Western societies. The selected groups come from Hong Kong, the Philippines, Singapore, Australia, the Netherlands, and Qatar. More than 10,000 secondary school students reported their mastery, performance, social, and extrinsic motivation. Results showed (very) small to moderately large gender differences, which were largely in line with prior research in Western societies. Moreover, significant differences in school motivation across the eight cultural groups were found, however, only the Qatari sample strongly deviated from the other samples. In all cultural groups, females had slightly higher scores on mastery motivation and social motivation (except for Qatari students), and in several Western and non-Western samples, males had slightly higher scores on performance motivation. Gender differences in extrinsic motivation were less straightforward

    Acinetobacter baumannii from Samples of Commercially Reared Turkeys: Genomic Relationships, Antimicrobial and Biocide Susceptibility

    Get PDF
    Acinetobacter baumannii is especially known as a cause of nosocomial infections worldwide. It shows intrinsic and acquired resistances to numerous antimicrobial agents, which can render the treatment difficult. In contrast to the situation in human medicine, there are only few studies focusing on A. baumannii among livestock. In this study, we have examined 643 samples from turkeys reared for meat production, including 250 environmental and 393 diagnostic samples, for the presence of A. baumannii. In total, 99 isolates were identified, confirmed to species level via MALDI-TOF-MS and characterised with pulsed-field gel electrophoresis. Antimicrobial and biocide susceptibility was tested by broth microdilution methods. Based on the results, 26 representative isolates were selected and subjected to whole-genome sequencing (WGS). In general, A. baumannii was detected at a very low prevalence, except for a high prevalence of 79.7% in chick-box-papers (n = 118) of one-day-old turkey chicks. The distributions of the minimal inhibitory concentration values were unimodal for the four biocides and for most of the antimicrobial agents tested. WGS revealed 16 Pasteur and 18 Oxford sequence types, including new ones. Core genome MLST highlighted the diversity of most isolates. In conclusion, the isolates detected were highly diverse and still susceptible to many antimicrobial agents

    Emergence of porcine epidemic diarrhea virus in southern Germany

    Get PDF
    Background Over the last years, porcine epidemic diarrhea virus (PEDV) has caused devastating enteric diseases in the US and several countries in Asia, while outbreaks in Europe have only been reported sporadically since the 1980s. At present, only insufficient information is available on currently circulating PEDV strains in Europe and their impact on the European swine industry. In this case report, we present epidemic outbreaks of porcine epidemic diarrhea in three farms in South-Western Germany. Case presentation Epidemic outbreaks of diarrhea affecting pigs of all age groups were reported in three farms, one fattening farm and two piglet producing farms, in South-Western Germany between May and November 2014. In the fattening farm yellowish, watery diarrhea without evidence of mucus or blood was associated with a massive reduction of feed consumption. Severity of clinical signs and mortality in young suckling pigs varied significantly between the two affected sow farms. While mortality in suckling piglets reached almost 70 % in one sow herd, no increase in suckling piglet mortality was observed in the second sow farm. In all three cases, PEDV was confirmed in feces and small intestines by RT-qPCR. Phylogenetic analyses based on full-length PEDV genomes revealed high identity among strains from all three herds. Moreover, the German strains showed very high nucleotide identity (99.4 %) with a variant of PEDV (OH851) that was isolated in the United States in January 2014. This strain with insertions and deletions in the S-gene (so called INDEL strains) was reported to show lower virulence. Slightly lower identities were found with other strains from the US and Asia. Conclusion Phylogenetic information on the distribution of PEDV strains in Europe is severely lacking. In this case report we demonstrate that acute outbreaks of PEDV occurred in southern Germany in 2014. Current strains were clearly different from isolates found in the 1980s and were closely related to a PEDV variant found in the US in 2014. Moreover, the present case report indicates that variant strains of PEDV, containing insertions and deletions in the S gene, which were reported to be of lower virulence, might be able to cause high mortality in suckling piglets

    Comparison of Porcine Epidemic Diarrhea Viruses from Germany and the United States, 2014

    Get PDF
    Since 2013, highly virulent porcine epidemic diarrhea virus has caused considerable economic losses in the United States. To determine the relation of US strains to those recently causing disease in Germany, we compared genomes and found that the strain from Germany is closely related to variants in the United States

    Detection of poxtA-and optrA-carrying E. faecium isolates in air samples of a Spanish swine farm

    Get PDF
    Objective: Two linezolid-resistant Enterococcus faecium isolates, C10004 and C10009, were recovered from air samples of a Spanish swine farm and comprehensively characterized. Methods: Detection of linezolid resistance mechanisms (mutations and acquisition of resistance genes) was performed by PCR/sequencing. Isolates were characterized by multilocus sequence typing (MLST), antimicrobial susceptibility testing, detection of antimicrobial resistance and virulence genes, and analysis of the genetic environment of the linezolid resistance genes. The characterization of isolate C10009 was performed by Whole-Genome-Sequencing and of isolate C10004 by PCR and amplicon sequencing, where applicable. Conjugation experiments to assess the transferability of the optrA and poxtA genes implicated in linezolid resistance were performed. Results: The linezolid-resistant E. faecium isolates C10004 and C10009, assigned to ST128 and ST437, respectively, harbored the optrA and poxtA genes. Neither mutations in the 23S rRNA nor in the genes for the ribosomal proteins L3, L4 and L22 were detected. C10004 and C10009 carried fourteen and thirteen antimicrobial resistance genes, respectively. The sequence alignment indicated that the genetic environment of the poxtA gene was identical in both isolates, with a downstream-located fexB gene. The poxtA gene was transferred by conjugation together with the fexB gene, and also with tet(M) and tet(L) in the case of isolate C10004. The optrA gene could not be transferred. Conclusions: This is the first report of the poxtA gene in Spain. The presence of poxtA- and optrA-carrying E. faecium isolates in air samples represents a public health concern, indicating an involvement of swine farms in the spread of linezolid-resistant bacteria

    Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin

    Get PDF
    Staphylococcus aureus can be a harmless coloniser, but it can also cause severe infections in humans, livestock and wildlife. Regarding the latter, only few studies have been performed and knowledge on virulence factors is insufficient. The aim of the present study was to study S. aureus isolates from deceased wild beavers (Castor fiber). Seventeen isolates from eleven beavers, found in Germany and Austria, were investigated. Antimicrobial and biocide susceptibility tests were performed. Isolates were characterised using S. aureus-specific DNA microarrays, spa typing and whole-genome sequencing. From two isolates, prophages were induced by mitomycin C and studied by transmission electron microscopy. Four isolates belonged to clonal complex (CC) 8, CC12, and CC398. Twelve isolates belonged to CC1956 and one isolate was CC49. The CC49 and CC1956 isolates carried distinct lukF/S genes related to the Panton-Valentine leukocidin (PVL) from human isolates of S. aureus. These genes were located on related, but not identical, Siphovirus prophages. The beavers, from which those isolates originated, suffered from abscesses, purulent organ lesions and necrotising pneumonia, i.e., clinical manifestations resembling symptoms of severe PVL-associated disease in humans. It might thus be assumed that the “Beaver Leukocidin (BVL, lukF/S-BV)”-positive strains are beaver-specific pathogens, and further studies on their clinical role as well as on a possible transmissibility to other species, including humans, are warranted
    corecore