120 research outputs found

    Simulation and Optimization of Multi-period Steam Cracking Process

    Get PDF
    Hydrocarbon steam cracking is the most important process for producing industrial chemicals such as olefin and aromatics. Steam cracking modelling and optimization is an effective way for increasing production and saving energy. In this chapter, multi-scale modelling and elementary reaction networks are established and used in the modelling and optimization of steam cracking. However, the large scale of the optimization model makes it difficult to obtain a solution. Thus, a surrogate coke thickness model for long-term steam cracking is proposed in this chapter to remove the connection between different periods of steam cracking process. By so doing, a parallel simulation can be used to accelerate optimization. An industrial case study showed optimization time to be significantly reduced from 17.78 hours to 2.08 hours using multi-period optimization with parallel simulation and the surrogate coke thickness model. It has been shown that a 0.62% increase in ethylene yield can be obtained via operating condition optimization, which demonstrates the effectiveness of the multi-scale steam cracking model and multi-period optimization with parallel simulation

    A fiber optic spectrometry system for measuring irradiance distributions in sea ice environments

    Get PDF
    Author Posting. Ā© American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 2844ā€“2857, doi:10.1175/JTECH-D-14-00108.1.A fiber opticā€“based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by multiple optical fibers, each coupled to the input fiber of the module via a mechanical rotary multiplexer. Small custom-printed optical diffusers, fixed to the input end of each fiber, allow these probes to be frozen into ice auger holes as small as 5 cm in diameter. Temperature-dependent biases in the spectrometer module and associated electronics were examined down to āˆ’40Ā°C using an environmental chamber to identify any artifacts that might arise when operating these electronic and optical components below their vendor-defined lower temperature limits. The optical performance of the entire system was assessed by freezing multiple fiber probes in a 1.2-m-tall ice column, illuminating from above with a light source, and measuring spectral irradiance distributions at different depths within the ice column. Results indicated that the radiometric sensitivity of this fiber-based system is comparable to that of commercially available oceanographic spectroradiometers.This research was supported by the Joint Initiative Awards Fund from the Andrew W. Mellon Foundation, through Woods Hole Oceanographic Institutionā€™s internal Interdisciplinary Study Award program (S. R. L. and T. M.), and by a China scholarship council (CSC) scholarship and the Program for Zhejiang Leading Team of S&T Innovation (Grant 2010R50036) provided to H. W.2015-06-0

    Real-time counting of single electron tunneling through a T-shaped double quantum dot system

    Full text link
    Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.Comment: 8 pages, 5 figure

    Identification of Novel SNPs by Next-Generation Sequencing of the Genomic Region Containing the APC Gene in Colorectal Cancer Patients in China

    Get PDF
    We described an approach of identifying single nucleotide polymorphisms (SNPs) in complete genomic regions of key genes including promoters, exons, introns, and downstream sequences by combining long-range polymerase chain reaction (PCR) or NimbleGen sequence capture with next-generation sequencing. Using the adenomatous polyposis coli (APC) gene as an example, we identified 210 highly reliable SNPs by next-generation sequencing analysis program MAQ and Samtools, of which 69 were novel ones, in the 123-kb APC genomic region in 27 pair of colorectal cancers and normal adjacent tissues. We confirmed all of the eight randomly selected high-quality SNPs by allele-specific PCR, suggesting that our false discovery rate is negligible. We identified 11 SNPs in the exonic region, including one novel SNP that was not previously reported. Although 10 of them are synonymous, they were predicted to affect splicing by creating or removing exonic splicing enhancers or exonic splicing silencers. We also identified seven SNPs in the upstream region of the APC gene, three of which were only identified in the cancer tissues. Six of these upstream SNPs were predicted to affect transcription factor binding. We also observed that long-range PCR was better in capturing GC-rich regions than the NimbleGen sequence capture technique.MOST, Chin

    Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing

    Get PDF
    RNA silencing is an innate antiviral mechanism conserved in organisms across kingdoms. Such cellular defense involves DICER or DICER-LIKEs (DCLs) that process viral RNAs into small interfering (vsi)RNAs. Plants encode four DCLs which play diverse roles in cell-autonomous virus-induced RNA silencing (known as VIGS) against viral invasion. However, intracellular VIGS can spread between cells, and the genetic basis and involvement of vsiRNAs in non-cell autonomous VIGS remains poorly understood. Here using GFP as a reporter gene together with a suite of DCL RNAi transgenic lines, we show that in addition to well-established activities of DCLs in intracellular VIGS and vsiRNA biogenesis, DCL4 inhibits intercellular VIGS whilst DCL2 is required, likely along with DCL2-processed/dependent vsiRNAs and their precursor RNAs, for efficient VIGS trafficking from epidermal to adjacent cells. DCL4 imposed an epistatic effect on DCL2 to impede cell-to-cell spread of VIGS. Our results demonstrate previously unknown functions for DCL2 and DCL4 which may form a dual defensive frontier for intra- and intercellular silencing to double-protect cells from virus infection in Nicotiana benthamiana
    • ā€¦
    corecore