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Abstract: Special attention should be paid during the development of the

driver circuitries for miniature spectrometers when using them in extreme

environments, especially when the ambient temperature changes tremen-

dously. In this study, a driver circuitry for a miniature spectrometer is

developed by providing a basic control signal and ADC circuitry. Mean-

while, temperature stability and power consumption are considered. The

performance of the driver circuitry is evaluated comprehensively from

−50°C to 30°C. The lower boundary is below the operating range of most

electronic parts adopted. Based on these examinations, temperature depend-

ence, linearity and conversion accuracy of the ADC circuitry are quantified.

And a correction algorithm is developed to correct any deviation in the driver

circuitry with an uncertainty of around ²20 Counts. The practicality of the

driver circuitry is also identified. This approach provides a general frame-

work for developing driver circuitry for miniature spectrometers which will

face tremendous variations in the ambient temperature.

Keywords: design, evaluation, driver circuitry, miniature spectrometer,

temperature
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1 Introduction

Sea ice in the Arctic is becoming less, thinner and younger in recent several

decades, which brings significant influence to the global climate change, marine

ecosystem, global shipping, et al. [1, 2, 3] It denotes that these variations are

primarily determined by two factors, thermodynamic and dynamic process in the

Arctic and the solar radiation which is one of the most important factors [4, 5, 6].

Solar radiation not only contributes to the melting of sea ice but also helps to shape

the species and biomass of the marine plankton in the Arctic. Therefore, great

efforts have been made to measure solar radiation distribution above or below the

Arctic sea ice [7, 8]. A fiber optic spectrometry system is proposed to measure

spectral intensity of solar radiation at different depths of sea ice, autonomously and

year-roundly [9]. The proposed system adopts one photodiode array miniature

spectrometer to detect solar radiation signals collected from multiple fiber probes

located at different depths of the sea ice. However, to our knowledge, field

application of this kind of miniature spectrometer in the Arctic has not been

reported previously, neither does its driver circuitry. The driver circuitries of most

commercial spectrometers are not applicable for our application since they are

operated via a USB interface with relatively complicated driver software which

will increase system complexity and the chance of system malfunction [10, 11]. On

top of this, the lower limit of the operating temperature range of these driver

circuitries is far higher than that of our system.

A driver circuitry is developed for this miniature spectrometer by providing

a basic control signal and ADC circuitry while overcoming the extremely cold

ambient temperature. The temperature in the Arctic winter could readily reach

−40°C and the proposed operating temperature of the spectrometry system even

could reach as low as −50°C. This extremely low temperature is below the lowest

operating temperature of most electrical parts and devices and brings great

challenges to the driver circuitry. Therefore, the temperature is the primary concern

during the development of the driver circuitry. Furthermore, the performance of the

driver circuit is assessed comprehensively from −50°C to 30°C, and a correction
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algorithm is developed to correct any deviation of the driver circuitry on the basis

of the assessments. The performance of the spectrometer together with the driver

circuitry is also examined, to verify the practicability of the driver circuitry.

2 Spectrometer and driver circuitry considerations

The miniature spectrometer adopted in the spectrometry system is a compact

module (C11009MA, Hamamatsu Photonics K. K., Japan) with a spectral range

of 340∼780 nm covering the range we are interested in (e.g., 400∼700 nm). Apart

from the external electrical interface, all of other optical components and elec-

tronics are sealed inside a metal shell which protects the spectrometer from the

influence of condensation of the airborne water vapor when the ambient temper-

ature drops below the dew point (Fig. 1). Simply provided with timing signals (e.g.,

ST and CLK), the spectrometer can output the photoelectrically converted voltages

corresponding to its 256-pixel photodiodes one-by-one via a common Video line

(Fig. 1 and Table I). Therefore, the timing signals generation function should be

involved in the driver circuitry to make the spectrometer work properly. And a low-

noise analog to digital converter (ADC) circuitry should be also involved for

accurately digitizing the analog voltage signals, to facilitate the subsequent data

storage and analysis. Additionally, system complexity and power consumption are

also considered, in view of the autonomous and year-round application in the

extremely cold sea ice environment.

Fig. 1. Schematic diagram of the miniature spectrometer used in this
study

Table I. Terminal name and general description of the electrical
interface of the spectrometer.

Terminal name Description Direction

ST Sensor scan start signal Input

CLK Sensor scan synchronization signal Input

Video Sensor video signal output Output

EOS Sensor end of scan signal Output
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3 Design of the driver circuitry

As mentioned above, the timing signals generation and ADC are the most

important parts of the driver circuitry. In this study, the former (e.g., generation

of ST and CLK) was separately generated by two general-purpose I/O (GPIO)

ports of a microcontroller, the latter was based on a 16-bit low-power ADC chip,

and the cooperation of entire driver circuitry was handled by the microcontroller

(Fig. 2). The low-power microcontroller (ATxmega128A1U, Atmel Corporation,

USA) has 128KB flash memory and 8KB SRAM which are very important for

temporary storage of the spectrometry measurements before they are stored in

an SD card. To keep the consistency and minimize temperature dependence of

integration time (e.g., tint in Fig. 3a) applied to the spectrometer over the entire

80°C range of operating temperatures, a temperature compensated crystal oscillator

(TCXO) with a frequency stability of �0:3 ppm (parts per million) over

−40°∼85°C was adopted to function as the system clock source of the micro-

controller. And the period of tint was controlled by an internal 16-bit timer working

at interrupt mode. The TCXO has a frequency of 12.8MHz, to facilitate the fast

readout of the spectrometry measurement. Since the maximum output (e.g., offset

voltage and saturation output) of the spectrometer specified by the vendor is ∼4.0V,
the reference voltage of the ADC chip (AD7988-5, Analog Devices Inc., USA) was

provided by a 5V ultra low noise voltage reference chip with an initial accuracy of

�2mV, to ensure all the spectrometry measurement fall into the input range of the

ADC circuitry. The adoption of the low noise ADC chip and ultra low noise voltage

reference chip is also critical to minimize the noise generated by the ADC circuitry

which might be coupled to the spectrometry measurement during the digitizing

process ultimately.

3.1 Timing coordination of the spectrometer and ADC

The timing chart of the spectrometer is shown in Fig. 3a. The spectrometer starts a

new scan from the rising edges of the ST signal. At each rising edge of the CLK

signal, the charge accumulated in each pixel photodiode of the spectrometer is

Fig. 2. Schematic of the driver circuitry of the spectrometer. The
arrows represent data flow of the spectrometer and the driver
circuitry.
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converted into a voltage signal by a common internal charge amplifier and then

outputted via a common Video line in turn. It should be noticed that, even though

integration time for each pixel photodiode is the same, the scan timing differs from

pixel to pixel. Therefore, the frequency of the CLK signal should be as fast as

possible to minimize the influence of the potential intensity fluctuation of the

incident light during field application.

The timing chart of the ADC chip is shown in Fig. 3b. The ADC chip starts the

conversion process at each rising edge of the CNV (e.g., convert input) signal, and

starts the acquisition process at each falling edge of the CNV. During the

acquisition process, the converted result is outputted to the microcontroller via

an SPI interface (e.g., SCK and SDO) with MSB (Most Significant Bit) delivered

first. To synchronize timing the spectrometer and the ADC, both CLK and CNVare

provided by a common GPIO pin of the microcontroller (Figs. 2 and 3).

3.2 Speed coordination of the spectrometer and ADC

Apart from the timing synchronization of the spectrometer and the ADC, the speed

of them should be matched as well to make sure the analog measurement outputted

from the spectrometer could be accurately digitized by the ADC. The minimum

readout width of the CLK signal (tCLKL in Fig. 3a) of the spectrometer specified by

the vendor is 1 µs, therefore maximum readout frequency for each pixel photodiode

should be lower than 1MHz. While the minimum time interval between conver-

sions (tCYC in Fig. 3b) of the ADC chip is 2 µs, which determines that the

maximum working speed fmax of the combination of the spectrometer and the

driver circuitry is 0.5MHz. This speed could be readily satisfied by the 12.8MHz

TCXO. Therefore, the minimum integration time minðtintÞ of the system is

calculated by

Fig. 3. The timing chart of (a) the spectrometer and (b) the ADC.
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minðiintÞ ¼ 1

fmax
ðnumber of pixels þ 2Þ ¼ 2 � 258 ¼ 516 �s ð1Þ

However, in view that the incident light level is not very strong in the field

application, the actual minimum integration time adopted by the system is 1ms

to facilitate the subsequent data analysis and processing.

3.3 Auxiliary design

In addition to the timing signal generation and ADC circuitry, there are still other

auxiliary considerations during the design of the driver circuitry. A digital thermo-

sensor was embedded inside the spectrometer which was used to indicate actual

temperature of the spectrometer. The working of the thermosensor and the readout

of the measured temperature were controlled by the microcontroller via an I2C

interface (e.g., SDA and SCL in Fig. 2). A serial communication interface

(USART) was also included in this circuitry to facilitate the debugging and data

communication. In order to minimize the noise of the driver circuitry, the digital

ground was isolated from analog ground using magnetic beads, besides the

adoption of the low-noise chips and parts stated above. To decrease the power

consumption of the entire system, the microcontroller would enter sleep mode after

it powered off the ADC circuitry and spectrometer during the non-working time.

4 Performance evaluation of the driver circuitry

Because the data regarding the temperature characteristics of this ADC circuitry are

largely unavailable for the range of temperatures we specify for operation

(−50°∼30°C), the potential temperature dependence of the ADC circuitry is

assessed. Meanwhile, linearity and conversion accuracy of the ADC circuitry is

also examined. Careful evaluation of these performances is essential to estimate

the degree how the spectrometry measurement been undistorted digitized and to

facilitate the development of the subsequent correction algorithm.

4.1 Experimental setup

As shown in Fig. 4, we put the driver circuitry inside an environmental test

chamber and measured the ADC output over a range of −50°∼30°C, while

providing with an adjustable input voltage. The input voltage generated by a

nominal 5V voltage reference chip and a potentiometer ranged from 0.2V to

4.2V for this examination, which should cover the entire output range of the

spectrometer since the maximum output was ∼4.0V and the minimum output (e.g.,

Fig. 4. Test configuration of the driver circuitry used to assess its
temperature dependence.

© IEICE 2017
DOI: 10.1587/elex.14.20170876
Received August 23, 2017
Accepted September 11, 2017
Publicized September 28, 2017
Copyedited October 25, 2017

6

IEICE Electronics Express, Vol.14, No.20, 1–12



offset voltage) was ∼1.0V. The measurements were taken every 5°C. At each test

temperature, we measured 256 times for each input voltage to minimize the

statistical uncertainty. Meanwhile, the input voltage and the reference voltage of

the ADC circuitry were measured by a common 6.5 bits high-precision multimeter,

and the switching of each channel was controlled by a single pole double throw

(SPDT) switch.

4.2 Temperature dependence of the ADC circuitry

The results indicate that temperature dependence of the reference voltage is roughly

in a parabolic manner, with the maximum value of 5.00146V at −25°C and a

minimum value of 5.00116V at 30°C (Fig. 5a). This corresponds to a variation of

at most 0.006% over the entire 80°C range of temperatures. In order to analyze

temperature dependence of the ADC output, we averaged the measurements at each

input voltage over the times collected. The results denote that the measured ADC

output is extremely stable from −50°C to 30°C under each of the test input voltage

(Fig. 5b). And it is very close to the ideal output of the ADC circuitry Cideal at each

input voltage Vin, which is given by (the dashed lines in Fig. 5b)

CidealðVin; T Þ ¼ Vin

Vref ðT Þ � 216 ¼ 216

Vref ðT Þ Vin ð2Þ

where Vref is the reference voltage, and T is the temperature. The discrepancy

between the measured ADC output and Cideal is all within �20 Counts from −50°C
to 30°C (Fig. 5c). Hence, it could be found that the temperature stability of the

ADC circuitry is excellent, which is critical for reducing temperature-induced

biases in the entire system (e.g., driver circuitry and the spectrometer) due to the

unavoidable temperature variation in the Arctic.

Fig. 5. Temperature dependence of (a) the reference voltage, (b) the
ADC output at four input voltages, and (c) discrepancy of
the measured ADC output at the same four input voltages as
(b). The dashed lines in (b) are the ideal output of the ADC
circuitry.
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4.3 Linearity and conversion accuracy of the ADC circuitry

As mentioned in the previous sections, the output of the spectrometer will be

digitized by the ADC circuitry. In order to simplify the correction process and

enhance the conversion accuracy, it is ideal that all of the analog spectrometer

output could be proportionally converted into counts by the ADC circuitry

following Eq. (2).

From the above assessments, we observe that the ADC output increase strongly

proportionally with higher input voltage with R2 bigger than 0.9999 and this

relationship differ slightly, for each test temperature (Fig. 6a). It verifies that

linearity of the ADC circuitry is excellent for the entire range of input voltages

(e.g., 1∼4V) and operating temperatures (e.g., −50°∼30°C) we concerned. There-
fore, a linear model is adopted to approximate the ADC output Cfit as a function of

Vin by

CfitðVin; T Þ ¼ aðT ÞVin þ bðT Þ ð3Þ
Where a and b are the least squares fitted slope and intercept, respectively. In

general, a differs slightly from the slope of Eq. (2) (e.g., 216Vref
�1ðT Þ) over

−50°∼30°C (Fig. 6b). a increases roughly parabolically with warmer temperature

from smaller than 9.9 Count V−1 at −50°C to bigger than 0.2 Count V−1 at −10°C.
Above −10°C, a is almost stable at 0.9 Count V−1 bigger than the slope of Eq. (2).

In contrast, b is decreased roughly parabolically with warmer temperature from 8.2

Counts at −50°C to −8.8 Counts at 30°C (Fig. 6c). The integral nonlinearity (INL)

of the ADC circuitry is smaller than 10 LSB over the entire 80°C range of operating

temperatures, which is acceptable for our application (Fig. 6d).

5 Correction algorithm for the ADC circuitry

Based on the above assessments, we find that the measured ADC output differs

from the ideal ADC output very slightly for each input voltage from −50°∼30°C

Fig. 6. (a) Input-output relationship of the ADC circuitry at four
temperatures; temperature dependence of (b) the fitted slope,
(c) the fitted intercept, and (d) INL of the ADC circuitry.
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(Figs. 5b and 5c). However, a correction algorithm is still developed to minimize

the deviation in the ADC circuitry as much as possible. The degree that the

measured ADC output deviating from the ideal one could be approximated by

the ratio of them α by

�ðT Þ ¼ CidealðVin; T Þ
CfitðVin; T Þ ¼ 216V�1

ref ðT ÞVin

aðT ÞVin þ bðT Þ ¼
216V�1

ref ðT Þ
aðT Þ

Vin

Vin þ a�1ðT ÞbðT Þ ð4Þ

Since a is at least three orders of magnitude greater than b at each temperature T

and Vin is all bigger than 1V for our application, Eq. (4) could be simplified as

�ðT Þ ¼ 216V�1
ref ðT Þ

aðT Þ ð5Þ

We observe that α decreases roughly linearly with warmer temperature from

1.00041 at −50°C to 0.99981 at 30°C (Fig. 7a). Assuming that the relationship

between the ideal ADC output and the counts as measured by this ADC circuitry

remains constant over the input voltages other than those we adopted and the

temperatures other than we measured in this study, the bias of this ADC circuitry

could be corrected by

CcorrðVin; T Þ ¼ �ðT ÞCmeasðVin; T Þ ð6Þ
where Ccorr and Cmeas are the corrected and directly measured ADC output

respectively. The value of the correction coefficient α at the temperatures other

than we measured could be predicted using a linear interpolation by

�ðT Þ ¼ �ðTiÞ þ ½�ðTiþ1Þ � �ðTiÞ� T � Ti
Tiþ1 � Ti

ð7Þ

Where Ti and Tiþ1 are the test temperatures we adopted, Ti � T < Tiþ1, and

1 � i � 16.

To evaluate the practicality of the correction algorithm, we independently

measured the ADC output at five temperatures ranging from −50.0°C to 30.0°C,

while providing the same input voltages from 0.2∼4.2V to the circuitry. We

Fig. 7. (a) Temperature dependence of the correction coefficient α; the
discrepancy of the ADC measurement (b) before correction and
(c) after correction at five temperatures.
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observe that the discrepancy between the ADC measurements and the ideal output

given by Eq. (2) at each input voltage and each test temperature, is all within −28.3
counts to 12.4 counts (Fig. 7b). The results also verify the excellent measurement

accuracy and repeatability of this ADC circuitry. After correcting these measure-

ments following Eq. (6), we find that the corrected ADC output corresponds well

with the ideal output given by Eq. (2), with the discrepancy of −23.4 counts to 10.7
counts over the test temperature range of −50°∼30°C (Fig. 7c). Even though the

improvement in the discrepancy after the correction process is relatively limited

due primarily to the excellent conversion accuracy of the ADC circuitry itself and

the slight difference existing in the correction coefficient α at different temperature,

the discrepancy after correction still reduces further in general compared with those

before correction. This verifies the effectiveness of the correction algorithm

developed in this part, which is especially recommended to those ADC measure-

ments where high conversion accuracy is of concern.

6 Performance evaluation of the driver circuitry with the

spectrometer

Having examined and corrected the driver circuitry itself, the performance of the

driver circuitry together with the spectrometer is examined to verify practicality

of the driver circuitry developed in this paper. The working mechanism of the

spectrometer determines that signal output of the spectrometer should be propor-

tional to integration time since more photons will be collected and converted into

signal output if the integration time is longer. Therefore, the time dependence of the

signal output is one of the most straightforward ways to evaluate their performance.

To do this, we put the spectrometer together with the driver circuitry into the

environmental chamber and measured the spectrometer output over the same range

of −50°∼30°C, while providing the spectrometer with a constant light source and

varying the integration time via the control of the driver circuitry (Fig. 8). The

tungsten light bulb was powered by a stabilized DC power supply to keep this light

source as stable as possible. The emitted light was guided to the spectrometer via a

fiber and the potential intensity fluctuation was monitored by a photodiode. At each

test temperature, we first waited ∼20 minutes for their temperature to stabilize

before collecting measurements. The measurement was taken 10 times at each of

the 10 different integration times ranging from 0.1 s to 8 s, to minimize statistical

uncertainty. The primary consideration for adopting such an integration time range

was to make the spectrometer output fall into its linear operating range even for the

longest integration time (e.g., 8 s), for the light source used in this examination.

Meanwhile, the dark output of the spectrometer was also measured at the same

integration time settings while there was no light entering the spectrometer, for the

subsequent correcting.

We first corrected the influence of the dark output in the spectrometer output by

subtraction at each integration time, to get the signal output only. We then averaged

the signal output over the measurements collected and corrected the influence of

the driver circuitry following Eq. (6). We then normalized the corrected signal

output for any intensity fluctuation in the light source as determined by the
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photodiode, by referencing the corresponding photodiode voltage to the one in the

first measurement.

The results denote that the general shape of the signal output is very similar for

each integration time, but the signal output for each wavelength varies significantly

(Fig. 9a). The signal output increases strongly proportionally with longer integra-

tion time at each wavelength for all the test temperatures (Fig. 9b), which agrees

well with working mechanism of the spectrometer and verifies the practicality of

the driver circuitry and the correction algorithm developed in this study. However,

signal output decreases significantly with colder temperature for each integration

time, this relationship is roughly in a linear manner (Figs. 9c and 9d). When the

temperature decreases from 30°C to −50°C, the signal output decreases by ∼36.7%
at 533 nm. This temperature-induced biases in the signal output are possibly due to

the thermal distortion of the internal optical elements and temperature dependence

of the internal electronics of the spectrometer. We notice that the temperature

dependence and time dependence of the spectrometer could be modeled and

corrected to get the exact spectral intensity of the incident light signal, but it is

out of the scope of this study.

Fig. 9. Signal output as a function of (a) wavelength at five integration
times, and (b) integration time at five wavelengths, at −50°C.
Signal output as a function of (c) wavelength at five temper-
atures, and (d) temperature at the same five wavelengths as (b),
at 1 s.

Fig. 8. Test configuration of the driver circuitry with the spectrometer
used to assess their performance.
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7 Conclusion

A driver circuitry for a miniature spectrometer has been developed in this paper, to

take charge of the operation of this spectrometer targeting the operating range of

−50°∼30°C. Performances of this driver circuitry were evaluated comprehensively

over the entire 80°C operating range of temperatures we concerned. And a

correction algorithm was developed to correct the biases in the ADC circuitry with

an uncertainty of around �20 Counts. Additionally, even though it had not been

discussed in the previous sections, the temperature dependence of the frequency of

the TCXO was also examined. It is always stable at 12.8MHz over −50°∼30°C.
These characteristics are good enough for our application. The practicality of

this driver circuitry was examined finally, which also testifies the practicality and

usefulness of our approach.
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