13 research outputs found

    ALS/FTDā€associated FUS activates GSKā€3Ī² to disrupt the VAPBā€“PTPIP51 interaction and ERā€“mitochondria associations

    Get PDF
    Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPBā€“PTPIP51 interaction and ERā€“mitochondria associations. These disruptions are accompanied by perturbation of Ca2+ uptake by mitochondria following its release from ER stores, which is a physiological readā€out of ERā€“mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUSā€expressing cells; mitochondrial ATP production is linked to Ca2+ levels. Finally, we demonstrate that the FUSā€induced reductions to ERā€“mitochondria associations and are linked to activation of glycogen synthase kinaseā€3Ī² (GSKā€3Ī²), a kinase already strongly associated with ALS/FTD

    Is there room for Darwinian medicine and the hygiene hypothesis in Alzheimer pathogenesis?

    No full text
    corecore