5 research outputs found

    Molecular assessment of muscle health and function : The effect of age, nutrition and physical activity on the human muscle transcriptome and metabolom

    Get PDF
    Prolonged lifespan and decreased fertility will lead to an increased proportion of older adults in the world population (population aging). An important strategy to deal with population aging has been to promote healthy aging; not only to prevent mounting health care costs, but also to maintain independence and quality of life of older populations for as long as possible. Close to the opposite of the healthy aging is frailty. A major component of (physical) frailty is sarcopenia: age-related loss of muscle mass. Decreased muscle size and strength has been associated with a wide variety of negative health outcomes, including increased risk of hospitalization, physical disability and even death. Therefore, maintaining muscle size and strength is very important for healthy aging. Nutrition and physical activity are possible strategies to maintain or even improve muscle function with age. The effect of nutrition, age, frailty and physical activity on the function of skeletal muscle is complex. A better understanding of the molecular mechanisms involved can provide new insights in potential strategies to maintain muscle function over the life course. This thesis aims to investigate these mechanisms and processes that underlie the effects of age, frailty and physical activity by leveraging the sensitivity and comprehensiveness of transcriptomics and metabolomics. Chapter 2 and 3 describe the effects of age, frailty and resistance-type exercise training on the skeletal muscle transcriptome and metabolome. Both the transcriptome and metabolome show significant differences between frail and healthy older adults. These differences are similar to the differneces between healthy young men and healthy older adults, suggesting that frailty presents itself as a more pronounced form of aging, somewhat independent of chronological age. These age and frailty related differences in the transcriptome are partially reversed by resistance-type exercise training, in accordance with the observed improvement in muscle strength. Regression analysis revealed that the protocadherin gamma gene cluster may be important to skeletal muscle function. Protocadherin gamma is involved in axon guidance and may be upregulated due to the denervation-reinnervation cycles observed in skeletal muscle of older individuals. The metabolome suggested that resistance-type exercise training led to a decrease in branched-chain amino acid oxidation, as shown by a decrease in amino acid derived carnitines. Lastly, the blood metabolome showed little agreement with the metabolome in skeletal muscle, indicating that blood is a poor read-out of muscle metabolism. We assessed the effect of knee immobilization with creatine supplementation or placebo on the skeletal muscle transcriptome and metabolome in chapter 4. Knee immobilization caused muscle mass loss and strength loss in all participants, with no differences between creatine and placebo groups. Knee immobilization appeared to induce the HDAC4-myogenin axis, which is primarily associated with denervation and motor neuron diseases. The metabolome showed changes consistent with the decreased expression of energy metabolism genes. While acyl-carnitine levels tended to decrease with knee immobilization, one branched-chain amino acid-derived acyl carnitine was increased after knee immobilization, suggesting increased amino acid oxidation. Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function among older populations. In chapter 5, supplementation with vitamin D (calcifediol, 25(OH)D) is investigated as nutritional strategy to improve muscle function among frail older adults. However, we observed no effect of vitamin D on the muscle transcriptome. These findings indicate the effects of vitamin D supplementation on skeletal muscle may be either absent, weak, or limited to a small subset of muscle cells. Transcriptomic changes due to different forms of muscle disuse are compared in chapter 6 (primarily knee immobilization and bed rest). The goal was to determine the similarities and differences among various causes of muscle atrophy in humans (primarily muscle disuse). Both knee immobilization and bed rest led to significant changes in the muscle transcriptome. However, the overlap in significantly changed genes was relatively small. Knee immobilization was characterized by ubiquitin-mediated proteolysis and induction of the HDAC4/Myogenin axis, whereas bed rest revealed increased expression of genes of the immune system and increased expression of lysosomal genes. Knee immobilization showed the highest similarity with age and frailty-related transcriptomic changes. This finding suggests that knee immobilization may be the most suitable form of disuse atrophy to assess the effectiveness of strategies to prevent age-related muscle loss in humans. The transcriptome and metabolome are incredibly useful tools in describing the wide array of biological systems within skeletal muscle. These systems can be modulated using physical activity (or lack thereof) as well as nutrition. This thesis describes some of these processes and highlights several unexplored genes and metabolites that may be important for maintaining or even optimizing muscle function. In the future, it may be possible to optimize both exercise and nutrition for each individual using these techniques; or even better, cheaper and less invasive alternatives.</p

    No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults

    Get PDF
    Objective: Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function in older adults. The aim of this study was to investigate the effect of calcifediol (25-hydroxycholecalciferol) on whole genome gene expression in skeletal muscle of vitamin D deficient frail older adults. Methods: A double-blind placebo-controlled trial was conducted in vitamin D deficient frail older adults (aged above 65), characterized by blood 25-hydroxycholecalciferol concentrations between 20 and 50 nmol/L. Subjects were randomized across the placebo group and the calcifediol group (10 μg per day). Muscle biopsies were obtained before and after 6 months of calcifediol (n = 10) or placebo (n = 12) supplementation and subjected to whole genome gene expression profiling using Affymetrix HuGene 2.1ST arrays. Results: Expression of the vitamin D receptor gene was virtually undetectable in human skeletal muscle biopsies, with Ct values exceeding 30. Blood 25-hydroxycholecalciferol levels were significantly higher after calcifediol supplementation (87.3 ± 20.6 nmol/L) than after placebo (43.8 ± 14.1 nmol/L). No significant difference between treatment groups was observed on strength outcomes. The whole transcriptome effects of calcifediol and placebo were very weak, as indicated by the fact that correcting for multiple testing using false discovery rate did not yield any differentially expressed genes using any reasonable cut-offs (all q-values ~ 1). P-values were uniformly distributed across all genes, suggesting that low p-values are likely to be false positives. Partial least squares-discriminant analysis and principle component analysis was unable to separate treatment groups. Conclusion: Calcifediol supplementation did not significantly affect the skeletal muscle transcriptome in frail older adults. Our findings indicate that vitamin D supplementation has no effects on skeletal muscle gene expression, suggesting that skeletal muscle may not be a direct target of vitamin D in older adults. Trial registration: This study was registered at clinicaltrials.gov as NCT02349282 on January 28, 2015.</p

    No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults

    No full text
    Objective: Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function in older adults. The aim of this study was to investigate the effect of calcifediol (25-hydroxycholecalciferol) on whole genome gene expression in skeletal muscle of vitamin D deficient frail older adults. Methods: A double-blind placebo-controlled trial was conducted in vitamin D deficient frail older adults (aged above 65), characterized by blood 25-hydroxycholecalciferol concentrations between 20 and 50 nmol/L. Subjects were randomized across the placebo group and the calcifediol group (10 μg per day). Muscle biopsies were obtained before and after 6 months of calcifediol (n = 10) or placebo (n = 12) supplementation and subjected to whole genome gene expression profiling using Affymetrix HuGene 2.1ST arrays. Results: Expression of the vitamin D receptor gene was virtually undetectable in human skeletal muscle biopsies, with Ct values exceeding 30. Blood 25-hydroxycholecalciferol levels were significantly higher after calcifediol supplementation (87.3 ± 20.6 nmol/L) than after placebo (43.8 ± 14.1 nmol/L). No significant difference between treatment groups was observed on strength outcomes. The whole transcriptome effects of calcifediol and placebo were very weak, as indicated by the fact that correcting for multiple testing using false discovery rate did not yield any differentially expressed genes using any reasonable cut-offs (all q-values ~ 1). P-values were uniformly distributed across all genes, suggesting that low p-values are likely to be false positives. Partial least squares-discriminant analysis and principle component analysis was unable to separate treatment groups. Conclusion: Calcifediol supplementation did not significantly affect the skeletal muscle transcriptome in frail older adults. Our findings indicate that vitamin D supplementation has no effects on skeletal muscle gene expression, suggesting that skeletal muscle may not be a direct target of vitamin D in older adults. Trial registration: This study was registered at clinicaltrials.gov as NCT02349282 on January 28, 2015.</p

    Weight loss moderately affects the mixed meal challenge response of the plasma metabolome and transcriptome of peripheral blood mononuclear cells in abdominally obese subjects

    Get PDF
    Introduction: The response to dietary challenges has been proposed as a more accurate measure of metabolic health than static measurements performed in the fasted state. This has prompted many groups to explore the potential of dietary challenge tests for assessment of diet and lifestyle induced shifts in metabolic phenotype. Objectives: We examined whether the response to a mixed-meal challenge could provide a readout for a weight loss (WL)-induced phenotype shift in abdominally obese male subjects. The underlying assumption of a mixed meal challenge is that it triggers all aspects of phenotypic flexibility and provokes a more prolonged insulin response, possibly allowing for better differentiation between individuals. Methods: Abdominally obese men (n = 29, BMI = 30.3 ± 2.4 kg/m2) received a mixed-meal challenge prior to and after an 8-week WL or no-WL control intervention. Lean subjects (n = 15, BMI = 23.0 ± 2.0 kg/m2) only received the mixed meal challenge at baseline to have a benchmark for WL-induced phenotype shifts. Results: Levels of several plasma metabolites were significantly different between lean and abdominally obese at baseline as well as during postprandial metabolic responses. Genes related to oxidative phosphorylation in peripheral blood mononuclear cells (PBMCs) were expressed at higher levels in abdominally obese subjects as compared to lean subjects at fasting, which was partially reverted after WL. The impact of WL on the postprandial response was modest, both at the metabolic and gene expression level in PBMCs. Conclusion: We conclude that mixed-meal challenges are not necessarily superior to measurements in the fasted state to assess metabolic health. Furthermore, the mechanisms accounting for the observed differences between lean and abdominally obese in the fasted state are different from those underlying the dissimilarity observed during the postprandial response

    PLIS: A metabolomic response monitor to a lifestyle intervention study in older adults

    No full text
    The response to lifestyle intervention studies is often heterogeneous, especially in older adults. Subtle responses that may represent a health gain for individuals are not always detected by classical health variables, stressing the need for novel biomarkers that detect intermediate changes in metabolic, inflammatory, and immunity-related health. Here, our aim was to develop and validate a molecular multivariate biomarker maximally sensitive to the individual effect of a lifestyle intervention; the Personalized Lifestyle Intervention Status (PLIS). We used 1 H-NMR fasting blood metabolite measurements from before and after the 13-week combined physical and nutritional Growing Old TOgether (GOTO) lifestyle intervention study in combination with a fivefold cross-validation and a bootstrapping method to train a separate PLIS score for men and women. The PLIS scores consisted of 14 and four metabolites for females and males, respectively. Performance of the PLIS score in tracking health gain was illustrated by association of the sex-specific PLIS scores with several classical metabolic health markers, such as BMI, trunk fat%, fasting HDL cholesterol, and fasting insulin, the primary outcome of the GOTO study. We also showed that the baseline PLIS score indicated which participants respond positively to the intervention. Finally, we explored PLIS in an independent physical activity lifestyle intervention study, showing similar, albeit remarkably weaker, associations of PLIS with classical metabolic health markers. To conclude, we found that the sex-specific PLIS score was able to track the individual short-term metabolic health gain of the GOTO lifestyle intervention study. The methodology used to train the PLIS score potentially provides a useful instrument to track personal responses and predict the participant's health benefit in lifestyle interventions similar to the GOTO study.Pattern Recognition and Bioinformatic
    corecore