35 research outputs found

    Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device

    Get PDF
    The resistive switching (RS) process of resistive random access memory (RRAM) is dynamically correlated with the evolution process of conductive path or conductive filament (CF) during its breakdown (rupture) and recovery (reformation). In this study, a statistical evaluation method is developed to analyze the filament structure evolution process in the reset operation of Cu/HfOâ‚‚/Pt RRAM device. This method is based on a specific functional relationship between the Weibull slopes of reset parameters' distributions and the CF resistance (R on). The CF of the Cu/HfOâ‚‚/Pt device is demonstrated to be ruptured abruptly, and the CF structure of the device has completely degraded in the reset point. Since no intermediate states are generated in the abrupt reset process, it is quite favorable for the reliable and stable one-bit operation in RRAM device. Finally, on the basis of the cell-based analytical thermal dissolution model, a Monte Carlo (MC) simulation is implemented to further verify the experimental results. This work provides inspiration for RRAM reliability and performance design to put RRAM into practical application

    Conductance quantization in resistive random access memory

    Get PDF
    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects

    Conductance Quantization in Resistive Random Access Memory

    Get PDF

    A RISC-V Processor with Area-Efficient Memristor-Based In-Memory Computing for Hash Algorithm in Blockchain Applications

    No full text
    Blockchain technology is increasingly being used in Internet of things (IoT) devices for information security and data integrity. However, it is challenging to implement complex hash algorithms with limited resources in IoT devices owing to large energy consumption and a long processing time. This paper proposes a RISC-V processor with memristor-based in-memory computing (IMC) for blockchain technology in IoT applications. The IMC-adapted instructions were designed for the Keccak hash algorithm by virtue of the extendibility of the RISC-V instruction set architecture (ISA). Then, a RISC-V processor with area-efficient memristor-based IMC was developed based on an open-source core for IoT applications, Hummingbird E200. The general compiling policy with the data allocation method is also disclosed for the IMC implementation of the Keccak hash algorithm. An evaluation shows that >70% improvements in both performance and energy saving were achieved with limited area overhead after introducing IMC in the RISC-V processor

    Investigation on the Conductive Filament Growth Dynamics in Resistive Switching Memory via a Universal Monte Carlo Simulator

    Get PDF
    Abstract In resistive random access memories, modeling conductive filament growing dynamics is important to understand the switching mechanism and variability. In this paper, a universal Monte Carlo simulator is developed based on a cell switching model and a tunneling-based transport model. Driven by external electric field, the growing process of the nanoscale filament occurring in the gap region is actually dominated by cells’ conductive/insulating switching, modeled through a phenomenological physics-based probability function. The electric transport through the partially formed CF is considered as current tunneling in the framework of the Quantum Point Contact model, and the potential barrier is modulated during cells’ evolution. To demonstrate the validity and universality of our simulator, various operation schemes are simulated, with the simulated I − V characteristics well explaining experimental observations. Furthermore, the statistical analyses of simulation results in terms of Weibull distribution and conductance evolution also nicely track previous experimental results. Representing a simulation scale that links atomic-scale simulations to compact modeling, our simulator has the advantage of being much faster comparing with other atomic-scale models. Meanwhile, our simulator shows good universality since it can be applied to various operation signals, and also to different electrodes and dielectric layers dominated by different switching mechanisms
    corecore