250 research outputs found

    Extracellular Vesicles as Drug Carriers for Enzyme Replacement Therapy to Treat CLN2 Batten Disease: Optimization of Drug Administration Routes

    Get PDF
    CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs). Herein, we incorporated TPP1 into EVs released by immune cells, macrophages, and examined biodistribution and therapeutic efficacy of EV-TPP1 in BD mouse model, using various routes of administration. Administration through intrathecal and intranasal routes resulted in high TPP1 accumulation in the brain, decreased neurodegeneration and neuroinflammation, and reduced aggregation of lysosomal storage material in BD mouse model, CLN2 knock-out mice. Parenteral intravenous and intraperitoneal administrations led to TPP1 delivery to peripheral organs: liver, kidney, spleen, and lungs. A combination of intrathecal and intraperitoneal EV-TPP1 injections significantly prolonged lifespan in BD mice. Overall, the optimization of treatment strategies is crucial for successful applications of EVs-based therapeutics for BD

    TPP1 Delivery to Lysosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease

    Get PDF
    Extracellular vesicles (EVs) are promising natural nanocarriers for delivery of various types of therapeutics. Earlier engineered EV-based formulations for neurodegenerative diseases and cancer are reported. Herein, the use of macrophage-derived EVs for brain delivery of a soluble lysosomal enzyme tripeptidyl peptidase-1, TPP1, to treat a lysosomal storage disorder, Neuronal Ceroid Lipofuscinoses 2 (CLN2) or Batten disease, is investigated. TPP1 is loaded into EVs using two methods: i) transfection of parental EV-producing macrophages with TPP1-encoding plasmid DNA (pDNA) or ii) incorporation therapeutic protein TPP1 into naive empty EVs. For the former approach, EVs released by pretransfected macrophages contain the active enzyme and TPP1-encoding pDNA. To achieve high loading efficiency by the latter approach, sonication or permeabilization of EV membranes with saponin is utilized. Both methods provide proficient incorporation of functional TPP1 into EVs (EV-TPP1). EVs significantly increase stability of TPP1 against protease degradation and provide efficient TPP1 delivery to target cells in in vitro model of CLN2. The majority of EV-TPP1 (≈70%) is delivered to target organelles, lysosomes. Finally, a robust brain accumulation of EV carriers and increased lifespan is recorded in late-infantile neuronal ceroid lipofuscinosis (LINCL) mouse model following intraperitoneal administration of EV-TPP1

    Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer

    Get PDF
    Delivery of nucleic acids into solid tumor environments remains a pressing challenge. This study examines the ability of macrophages to horizontally transfer small interfering RNA (siRNA) lipoplexes to cancer cells. Macrophages are a natural candidate for a drug carrier because of their ability to accumulate at high densities into many cancer types, including, breast, prostate, brain, and colon cancer. Here, it is demonstrated that macrophages can horizontally transfer siRNA to cancer cells during in vitro coculture. The amount of transfer can be dosed depending on the amount of siRNA loaded and total number of macrophages delivered. Macrophages loaded with calcium integrin binding protein-1 (CIB1)-siRNA result in decreased tumorsphere growth and decreased mRNA expression of CIB1 and KI67 in MDA-MB-468 human breast cancer cells. Adoptive transfer of macrophages transfected with CIB1-siRNA localizes to the orthotopic MDA-MB-468 tumor. Furthermore, it is reported that macrophage activation can modulate this transfer process as well as intracellular trafficking protein Rab27a. As macrophages are heavily involved in tumor progression, understanding how to use macrophages for drug delivery can substantially benefit the treatment of tumors

    Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy

    Get PDF
    Efficient targeted delivery of anticancer agents to TNBC cells remains one of the greatest challenges to developing therapies. The lack of tumor-specific markers, aggressive nature of the tumor, and unique propensity to recur and metastasize make TNBC tumors more difficult to treat than other subtypes. We propose to exploit natural ability of macrophages to target cancer cells by means of extracellular vesicles (EVs) as drug delivery vehicles for chemotherapeutic agents, paclitaxel (PTX) and doxorubicin (Dox). We demonstrated earlier that macrophage-derived EVs loaded with PTX (EV-PTX) and Dox (EV-Dox) target cancer cells and exhibited high anticancer efficacy in a mouse model of pulmonary metastases. Herein, we report a manufacture and characterization of novel EV-based drug formulations using different loading procedures that were optimized by varying pH, temperature, and sonication conditions. Selected EV-based formulations showed a high drug loading, efficient accumulation in TNBC cells in vitro, and pronounced anti-proliferation effect. Drug-loaded EVs target TNBC in vivo, including the orthotopic mouse T11 tumors in immune competent BALB/C mice, and human MDA-MB-231 tumors in athymic nu/nu mice, and abolished tumor growth. Overall, EV-based formulations can provide a novel solution to a currently unmet clinical need and reduce the morbidity and mortality of TNBC patients

    Human organoid biofilm model for assessing antibiofilm activity of novel agents

    Get PDF
    Bacterial biofilms cause 65% of all human infections and are highly resistant to antibiotic therapy but lack specific treatments. To provide a human organoid model for studying host-microbe interplay and enabling screening for novel antibiofilm agents, a human epidermis organoid model with robust methicillin-resistant Staphylococcus aureus (MRSA) USA300 and Pseudomonas aeruginosa PAO1 biofilm was developed. Treatment of 1-day and 3-day MRSA and PAO1 biofilms with antibiofilm peptide DJK-5 significantly and substantially reduced the bacterial burden. This model enabled the screening of synthetic host defense peptides, revealing their superior antibiofilm activity against MRSA compared to the antibiotic mupirocin. The model was extended to evaluate thermally wounded skin infected with MRSA biofilms resulting in increased bacterial load, cytotoxicity, and pro-inflammatory cytokine levels that were all reduced upon treatment with DJK-5. Combination treatment of DJK-5 with an anti-inflammatory peptide, 1002, further reduced cytotoxicity and skin inflammation.Immunogenetics and cellular immunology of bacterial infectious disease

    Mannosylated Cationic Copolymers for Gene Delivery to Macrophages

    Get PDF
    Macrophages are desirable targets for gene therapy of cancer and other diseases. Cationic diblock copolymers of polyethylene glycol (PEG) and poly-L-lysine (PLL) or poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (pAsp(DET)) are synthesized and used to form polyplexes with a plasmid DNA (pDNA) that are decorated with mannose moieties, serving as the targeting ligands for the C type lectin receptors displayed at the surface of macrophages. The PEG-b-PLL copolymers are known for its cytotoxicity, so PEG-b-PLL-based polyplexes are cross-linked using reducible reagent dithiobis(succinimidyl propionate) (DSP). The cross-linked polyplexes display low toxicity to both mouse embryonic fibroblasts NIH/3T3 cell line and mouse bone marrow-derived macrophages (BMMΦ). In macrophages mannose-decorated polyplexes demonstrate an ≈8 times higher transfection efficiency. The cross-linking of the polyplexes decrease the toxicity, but the transfection enhancement is moderate. The PEG-b-pAsp(DET) copolymers display low toxicity with respect to the IC-21 murine macrophage cell line and are used for the production of non-cross-linked pDNA-contained polyplexes. The obtained mannose modified polyplexes exhibit ca. 500-times greater transfection activity in IC-21 macrophages compared to the mannose-free polyplexes. This result greatly exceeds the targeting gene transfer effects previously described using mannose receptor targeted non-viral gene delivery systems. These results suggest that Man-PEG-b-pAsp(DET)/pDNA polyplex is a potential vector for immune cells-based gene therapy

    Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules

    Get PDF
    Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson’s disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson’s disease. © 2016 American Chemical Society

    Macrophages with cellular backpacks for targeted drug delivery to the brain

    Get PDF
    Most potent therapeutics are unable to cross the blood-brain barrier following systemic administration, which necessitates the development of unconventional, clinically applicable drug delivery systems. With the given challenges, biologically active vehicles are crucial to accomplishing this task. We now report a new method for drug delivery that utilizes living cells as vehicles for drug carriage across the blood brain barrier. Cellular backpacks, 7–10 μm diameter polymer patches of a few hundred nanometers in thickness, are a potentially interesting approach, because they can act as drug depots that travel with the cell-carrier, without being phagocytized. Backpacks loaded with a potent antioxidant, catalase, were attached to autologous macrophages and systemically administered into mice with brain inflammation. Using inflammatory response cells enabled targeted drug transport to the inflamed brain. Furthermore, catalase-loaded backpacks demonstrated potent therapeutic effects deactivating free radicals released by activated microglia in vitro. This approach for drug carriage and release can accelerate the development of new drug formulations for all the neurodegenerative disorders

    Blood-borne macrophage-neural cell interactions hitchhike on endosome networks for cell-based nanozyme brain delivery

    Get PDF
    Background: Macrophage-carried nanoformulated catalase ('nanozyme) attenuates neuroinflammation and protects nigrostriatal neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. This is facilitated by effective enzyme transfer from blood-borne macrophages to adjacent endothelial cells and neurons leading to the decomposition of reactive oxygen species. Materials & methods: We examined the intra- and inter-cellular trafficking mechanisms of nanozymes by confocal microscopy. Improved neuronal survival mediated by nanozyme-loaded macrophages was demonstrated by fluorescence-activated cell sorting. Results: In macrophages, nanozymes were internalized mainly by clathrin-mediated endocytosis then trafficked to recycling endosomes. The enzyme is subsequently released in exosomes facilitated by bridging conduits. Nanozyme transfer from macrophages to adjacent cells by endocytosis-independent mechanisms diffusing broadly throughout the recipient cells. In contrast, macrophage-free nanozymes were localized in lysosomes following endocytic entry. Conclusion: Facilitated transfer of nanozyme from cell to cell can improve neuroprotection against oxidative stress commonly seen during neurodegenerative disease processes

    Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells

    Get PDF
    Background: Our laboratories forged the concept of macrophage delivery of protein antioxidants to attenuate neuroinflammation and nigrostriatal neurodegeneration in Parkinsons disease. Notably, the delivery of the redox enzyme, catalase, incorporated into a polyion complex micelle ('nanozyme) by bone marrow-derived macrophages protected nigrostriatum against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Nonetheless, how macrophage delivery of nanozyme increases the efficacy of catalase remains unknown. Methods: In this study, we examined the transfer of nanozyme from macrophages to brain microvessel endothelial cells, neurons and astrocytes. Results: Facilitated transport of the nanozyme from macrophages to endothelial, neuronal and glial target cells occurred through endocytosis-independent mechanisms that involved fusion of cellular membranes, macrophage bridging conduits and nanozyme lipid coatings. Nanozyme transfer was operative across an artificial blood-brain barrier and showed efficient reactive oxygen species decomposition. Conclusion: This is the first demonstration, to our knowledge, that drug-loaded macrophages discharge particles to contiguous target cells for therapeutic brain enzyme delivery. The data shown are of potential value for the treatment of neurodegenerative disorders and notably, Parkinsons disease
    • …
    corecore