12 research outputs found
Human Astrocytes Exhibit Tumor Microenvironment-, Age-, and Sex-Related Transcriptomic Signatures
: Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurological diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peri-tumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurological disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. This data provides powerful new insights into human astrocyte biology in several biologically relevant states, that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENTAstrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurological diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease
Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders
Over the past decade, large-scale genetic studies have successfully identified hundreds of genetic variants robustly associated with risk for psychiatric disorders. However, mechanistic insight and clinical translation continue to lag the pace of risk variant identification, hindered by the sheer number of targets and their predominant noncoding localization, as well as pervasive pleiotropy and incomplete penetrance. Successful next steps require identification of "causal" genetic variants and their proximal biological consequences; placing variants within biologically defined functional contexts, reflecting specific molecular pathways, cell types, circuits, and developmental windows; and characterizing the downstream, convergent neurobiological impact of polygenicity within an individual. Here, we discuss opportunities and challenges of high-throughput transcriptomic profiling in the human brain, and how transcriptomic approaches can help pinpoint mechanisms underlying genetic risk for psychiatric disorders at a scale necessary to tackle daunting levels of polygenicity. These include transcriptome-wide association studies for risk gene prioritization through integration of genome-wide association studies with expression quantitative trait loci. We outline transcriptomic results that inform our understanding of the brain-level molecular pathology of psychiatric disorders, including autism spectrum disorder, bipolar disorder, major depressive disorder, and schizophrenia. Finally, we discuss systems-level approaches for integration of distinct genetic, genomic, and phenotypic levels, including combining spatially resolved gene expression and human neuroimaging maps. Results highlight the importance of understanding gene expression (dys)regulation across human brain development as a major contributor to psychiatric disease pathogenesis, from common variants acting as expression quantitative trait loci to rare variants enriched for gene expression regulatory pathways
Hepatic arginase deficiency fosters dysmyelination during postnatal CNS development.
Deficiency of arginase is associated with hyperargininemia, and prominent features include spastic diplegia/tetraplegia, clonus, and hyperreflexia; loss of ambulation, intellectual disability and progressive neurological decline are other signs. To gain greater insight into the unique neuromotor features, we performed gene expression profiling of the motor cortex of a murine model of the disorder. Coexpression network analysis suggested an abnormality with myelination, which was supported by limited existing human data. Utilizing electron microscopy, marked dysmyelination was detected in 2-week-old homozygous Arg1-KO mice. The corticospinal tract was found to be adversely affected, supporting dysmyelination as the cause of the unique neuromotor features and implicating oligodendrocyte impairment in a deficiency of hepatic Arg1. Following neonatal hepatic gene therapy to express Arg1, the subcortical white matter, pyramidal tract, and corticospinal tract all showed a remarkable recovery in terms of myelinated axon density and ultrastructural integrity with active wrapping of axons by nearby oligodendrocyte processes. These findings support the following conclusions: arginase deficiency is a leukodystrophy affecting the brain and spinal cord while sparing the peripheral nervous system, and neonatal AAV hepatic gene therapy can rescue the defects associated with myelinated axons, strongly implicating the functional recovery of oligodendrocytes after restoration of hepatic arginase activity
Recommended from our members
Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia.
The most significant common variant association for schizophrenia (SCZ) reflects increased expression of the complement component 4A (C4A). Yet, it remains unclear how C4A interacts with other SCZ risk genes or whether the complement system more broadly is implicated in SCZ pathogenesis. Here, we integrate several existing, large-scale genetic and transcriptomic datasets to interrogate the functional role of the complement system and C4A in the human brain. Unexpectedly, we find no significant genetic enrichment among known complement system genes for SCZ. Conversely, brain co-expression network analyses using C4A as a seed gene reveal that genes downregulated when C4A expression increases exhibit strong and specific genetic enrichment for SCZ risk. This convergent genomic signal reflects synaptic processes, is sexually dimorphic and most prominent in frontal cortical brain regions, and is accentuated by smoking. Overall, these results indicate that synaptic pathways-rather than the complement system-are the driving force conferring SCZ risk
TGFβ superfamily signaling regulates the state of human stem cell pluripotency and competency to create telencephalic organoids
Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are emerging as an effective system to study the distinct features of the developing human brain and the underlying causes of many neurological disorders. While progress in organoid technology has been steadily advancing, many challenges remain including rampant batch-to-batch and cell line-to-cell line variability and irreproducibility. Here, we demonstrate that a major contributor to successful cortical organoid production is the manner in which hPSCs are maintained prior to differentiation. Optimal results were achieved using fibroblast-feeder-supported hPSCs compared to feeder-independent cells, related to differences in their transcriptomic states. Feeder-supported hPSCs display elevated activation of diverse TGFβ superfamily signaling pathways and increased expression of genes associated with naïve pluripotency. We further identify combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enable reproducible formation of brain structures suitable for disease modeling
TGFβ superfamily signaling regulates the state of human stem cell pluripotency and capacity to create well-structured telencephalic organoids.
Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are a promising system for studying the distinct features of the developing human brain and the underlying causes of many neurological disorders. While organoid technology is steadily advancing, many challenges remain, including potential batch-to-batch and cell-line-to-cell-line variability, and structural inconsistency. Here, we demonstrate that a major contributor to cortical organoid quality is the way hPSCs are maintained prior to differentiation. Optimal results were achieved using particular fibroblast-feeder-supported hPSCs rather than feeder-independent cells, differences that were reflected in their transcriptomic states at the outset. Feeder-supported hPSCs displayed activation of diverse transforming growth factor β (TGFβ) superfamily signaling pathways and increased expression of genes connected to naive pluripotency. We further identified combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enhance the formation of well-structured brain tissues suitable for disease modeling
Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD
Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions
Recommended from our members
Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development