28 research outputs found

    Nanochannel fabrication and characterization using bond micromachining

    Get PDF
    This thesis deals with the fabrication and characterization of nanochannels (channels with at least one dimension in the sub-100 nm range). These channels are important for various areas of research, including DNA analysis systems and chemical sensors. In addition, the behavior of liquids in nano-confinement is of interest for many of the applications. The technologies currently used to fabricate\ud nanochannels are often expensive and/or time consuming or simply not accurate enough. This creates a need for controlled, yet simple fabrication technologies

    Viscosity of Water in Nano-Confinement

    Get PDF
    Since the early 1970s there is a notion that water near polar or charged surfaces is somehow ordered or structured, leading to a so called structural component of the disjoining pressure

    Capillarity effect in silicon based nanochannels

    Get PDF
    Using silicon based micromachining we have developed different techniques to create 1D and 2D confined nanochannels, with a characteristic diameter down to 5 nm. A short introduction to these techniques will be given. Capillary action in channels of this small size is a strong effect

    Integrated thermal and microcoriolis flow sensing system with a dynamic flow range of more than five decades

    Get PDF
    We have realized a micromachined single chip flow sensing system with an ultra-wide dynamic flow range of more than five decades, from 100 nL/h up to more than 10 mL/h. The system comprises both a thermal and a micro Coriolis flow sensor with partially overlapping flow ranges

    Compact mass flow meter based on a micro coriolis flow sensor

    Get PDF
    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air) and liquids (water and isopropanol). As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg

    The Athena x-ray optics development and accommodation

    Get PDF
    The Athena mission, under study and preparation by ESA as its second Large-class science mission, requires the largest X-ray optics ever flown, building on a novel optics technology based on mono crystalline silicon. Referred to as Silicon Pore Optics technology (SPO), the optics is highly modular and benefits from technology spin-in from the semiconductor industry. The telescope aperture of about 2.5 meters is populated by around 700 mirror modules, accurately co-aligned to produce a common focus. The development of the SPO technology is a joint effort by European industrial and research entities, working together to address the challenges to demonstrate the imaging performance, robustness and efficient series production of the Athena optics. A technology development plan was established and is being regularly updated to reflect the latest developments, and is fully funded by the ESA technology development programmes. An industrial consortium was formed to ensure coherence of the individual technology development activities. The SPO technology uses precision machined mirror plates produced using the latest generation top quality 12 inch silicon wafers, which are assembled into rugged stacks. The surfaces of the mirror plates and the integral support structure is such, that no glue is required to join the individual mirror plates. Once accurately aligned with respect to each other, the surfaces of the mirror plates merge in a physical bonding process. The resultant SPO mirror modules are therefore very accurate and stable and can sustain the harsh conditions encountered during launch and are able to tolerate the space environment expected during operations. The accommodation of the Athena telescope is also innovative, relying on a hexapod mechanism to align the optics to the selected detector instruments located in the focal plane. System studies are complemented by dedicated technology development activities to demonstrate the capabilities before the adoption of the Athena mission

    Silicon pore optics mirror modules for inner and outer radii

    Get PDF
    Athena (Advanced Telescope for High Energy Astrophysics) is an x-ray observatory using a Silicon Pore Optics telescope and was selected as ESA's second L-class science mission for a launch in 2028. The x-ray telescope consists of several hundreds of mirror modules distributed over about 15-20 radial rings. The radius of curvature and the module sizes vary among the different radial positions of the rings resulting in different technical challenges for mirror modules for inner and outer radii. We present first results of demonstrating Silicon Pore Optics for the extreme radial positions of the Athena telescope. For the inner most radii (0.25 m) a new mirror plate design is shown which overcomes the challenges of larger curvatures, higher stress values and bigger plates. Preliminary designs for the mounting system and its mechanical properties are discussed for mirror modules covering all other radial positions up to the most outer radius of the Athena telescope
    corecore