8 research outputs found

    Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin

    No full text
    Considering the fact that Agrotis segetum is one of the most pathogenic insects to vegetables and cereals in the world, particularly in Africa, the mode of action of Vip3Aa16 of Bacillus thuringiensis BUPM95 and Cry1Ac of the recombinant strain BNS3Cry-(pHTcry1Ac) has been examined in this crop pest. A. segetum proteases activated the Vip3Aa16 protoxin (90kDa) yielding three bands of about 62, 45, 22kDa and the activated form of the toxin was active against this pest with an LC50 of about 86ng/cm(2). To be active against A. segetum, Cry1Ac protoxin was activated to three close bands of about 60-65kDa. Homologous and heterologous competition binding experiments demonstrated that Vip3Aa16 bound specifically to brush border membrane vesicles (BBMV) prepared from A. segetum midgut and that it does not inhibit the binding of Cry1Ac. Moreover, BBMV protein blotting experiments showed that the receptor of Vip3Aa16 toxin in A. segetum midgut differs from that of Cry1Ac. In fact, the latter binds to a 120kDa protein whereas the Vip3Aa16 binds to a 65kDa putative receptor. The midgut histopathology of Vip3Aa16 fed larvae showed vacuolization of the cytoplasm, brush border membrane lysis, vesicle formation in the goblet cells and disintegration of the apical membrane. The distinct binding properties and the unique protein sequence of Vip3Aa16 support its use as a novel insecticidal agent to control the crop pest A. segetum.Ministere de l’Enseignement Superieur et de la Recherche Scientifiqu

    Vegetative insecticidal protein of Bacillus thuringiensis BLB459 and its efficiency against Lepidoptera

    No full text
    Bacillus thuringiensis strain BLB459 supernatant showed a promising activity against Lepidopteran pests with extremely damages in the larvae midgut. Investigations of the genes that encode secreted toxin demonstrated that this strain harbored a vip3-type gene named vip3(459). Based on its original nucleotide and amino acid sequences, this gene was cloned into pET-14b vector and overexpressed in Escherichia coli. The expressed protein was purified and tested against different insects and interestingly the novel toxin demonstrated a remarkable activity against the stored products pest Ephestia kuehniella and the polyphagous insects Spodoptera littoralis and Agrotis segetum. As demonstrated, the acute activity of Vip3(459) protein against A. segetum can be due to its original amino acids sequence and the putative receptors of this toxin in the larvae midgut. These results demonstrated that this Vip3 toxin showed a wide spectrum of activity against Lepidoptera and support its use as a biological control agent.Scopu

    Overproduction of Glucose Oxidase by Aspergillus tubingensis CTM 507 Randomly Obtained Mutants and Study of Its Insecticidal Activity against Ephestia kuehniella

    No full text
    In order to enhance the production of glucose oxidase (GOD), random mutagenesis of Aspergillus tubingensis CTM 507 was performed using the chemical and physical mutagens: nitric acid and UV irradiation, respectively. The majority of the isolated mutants showed good GOD production, but only some mutants presented a significant overproduction, as compared with the parent strain. The selected mutants (19 strains), showing an overproduction larger than 200%, are quite stable after three successive subcultures. Among these, six strains revealed an important improvement in submerged fermentation. The insecticidal activity of GOD produced by the wild and the selected mutant strains was evaluated against the third larval instars of E. kuehniella. Mutant strains U11, U12, U20, and U21, presenting the most important effect, displayed an LC50 value of 89.00, 88.51, 80.00, and 86.00 U/cm2, respectively, which was 1.5-fold more important than the wild strain (61 U/cm2). According to histopathology observations, the GOD enzyme showed approximately similar damage on the E. kuehniella midgut including rupture and disintegration of the epithelial layer and cellular vacuolization. The data supports, for the first time, the use of GOD as a pest control agent against E. kuehniella

    Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis

    No full text
    The bacterium Bacillus thuringiensis produces, at the vegetative stage of its growth, Vip3A proteins with activity against a broad spectrum of lepidopteran insects. The Egyptian cotton leaf worm (Spodoptera littoralis) is an important agricultural pest that is susceptible to the Vip3Aa16 protein of Bacillus thuringiensis kurstaki strain BUPM95. The midgut histopathology of Vip3Aa fed larvae showed vacuolization of the cytoplasm, brush border membrane destruction, vesicle formation in the apical region and cellular disintegration. Biotinylated Vip3Aa toxin bound proteins of 55- and 100-kDa on blots of S. littoralis brush border membrane preparations. These binding proteins differ in molecular size from those recognized by Cry1C, one of the very few Cry proteins active against the polyphagous S. littoralis. This result supports the use of Vip3Aa16 proteins as insecticidal agent, especially in case of Cry-resistance management.Ministère de l’Enseignement Supérieur et de la Recherche Scientifiqu
    corecore