576 research outputs found

    Numerical Portrait of a Relativistic BCS Gapped Superfluid

    Full text link
    We present results of numerical simulations of the 3+1 dimensional Nambu - Jona-Lasinio (NJL) model with a non-zero baryon density enforced via the introduction of a chemical potential mu not equal to 0. The triviality of the model with a number of dimensions d>=4 is dealt with by fitting low energy constants, calculated analytically in the large number of colors (Hartree) limit, to phenomenological values. Non-perturbative measurements of local order parameters for superfluidity and their related susceptibilities show that, in contrast to the 2+1 dimensional model, the ground-state at high chemical potential and low temperature is that of a traditional BCS superfluid. This conclusion is supported by the direct observation of a gap in the dispersion relation for 0.5<=(mu a)<=0.85, which at (mu a)=0.8 is found to be roughly 15% the size of the vacuum fermion mass. We also present results of an initial investigation of the stability of the BCS phase against thermal fluctuations. Finally, we discuss the effect of splitting the Fermi surfaces of the pairing partners by the introduction of a non-zero isospin chemical potential.Comment: 41 pages, 19 figures, uses axodraw.sty, v2: minor typographical correction

    The Phases and Triviality of Scalar Quantum Electrodynamics

    Get PDF
    The phase diagram and critical behavior of scalar quantum electrodynamics are investigated using lattice gauge theory techniques. The lattice action fixes the length of the scalar (``Higgs'') field and treats the gauge field as non-compact. The phase diagram is two dimensional. No fine tuning or extrapolations are needed to study the theory's critical behovior. Two lines of second order phase transitions are discovered and the scaling laws for each are studied by finite size scaling methods on lattices ranging from 646^4 through 24424^4. One line corresponds to monopole percolation and the other to a transition between a ``Higgs'' and a ``Coulomb'' phase, labelled by divergent specific heats. The lines of transitions cross in the interior of the phase diagram and appear to be unrelated. The monopole percolation transition has critical indices which are compatible with ordinary four dimensional percolation uneffected by interactions. Finite size scaling and histogram methods reveal that the specific heats on the ``Higgs-Coulomb'' transition line are well-fit by the hypothesis that scalar quantum electrodynamics is logarithmically trivial. The logarithms are measured in both finite size scaling of the specific heat peaks as a function of volume as well as in the coupling constant dependence of the specific heats measured on fixed but large lattices. The theory is seen to be qualitatively similar to λϕ4\lambda\phi^{4}. The standard CRAY random number generator RANF proved to be inadequateComment: 25pages,26figures;revtex;ILL-(TH)-94-#12; only hardcopy of figures availabl

    Sigmoid Neural Transfer Function Realised by Percolation

    No full text
    An experiment using the phenomenon of percolation has been conducted to demonstrate the implementation of neural functionality (summing and sigmoid transfer). A simple analog approximation to digital percolation is implemented. The device consists of a piece of amorphous silicon with stochastic bit-stream optical inputs, in which a current percolating from one end to the other defines the neuron output, also in the form of a stochastic bit stream. Preliminary experimental results are presented

    Numerical Portrait of a Relativistic Thin Film BCS Superfluid

    Get PDF
    We present results of numerical simulations of the 2+1d Nambu - Jona-Lasinio model with a non-zero baryon chemical potential mu including the effects of a diquark source term. Diquark condensates, susceptibilities and masses are measured as functions of source strength j. The results suggest that diquark condensation does not take place in the high density phase mu>mu_c, but rather that the condensate scales non-analytically with j implying a line of critical points and long range phase coherence. Analogies are drawn with the low temperature phase of the 2d XY model. The spectrum of the spin-1/2 sector is also studied yielding the quasiparticle dispersion relation. There is no evidence for a non-zero gap; rather the results are characteristic of a normal Fermi liquid with Fermi velocity less than that of light. We conclude that the high density phase of the model describes a relativistic gapless thin film BCS superfluid.Comment: 37 pages, 16 figure

    QCD-like Theories at Finite Baryon and Isospin Density

    Get PDF
    We use 2-color QCD as a model to study the effects of simultaneous presence of chemical potentials for isospin charge, μI\mu_I, and for baryon number, μB\mu_B. We determine the phase diagrams for 2 and 4 flavor theories using the method of effective chiral Lagrangians at low densities and weak coupling perturbation theory at high densities. We determine the values of various condensates and densities as well as the spectrum of excitations as functions of μI\mu_I and μB\mu_B. A similar analysis of QCD with quarks in the adjoint representation is also presented. Our results can be of relevance for lattice simulations of these theories. We predict a phase of inhomogeneous condensation (Fulde-Ferrel-Larkin-Ovchinnikov phase) in the 2 colour 2 flavor theory, while we do not expect it the 4 flavor case or in other realizations of QCD with a positive measure.Comment: 17 pages, 14 figure

    Zero Lattice Sound

    Full text link
    We study the N_f-flavor Gross-Neveu model in 2+1 dimensions with a baryon chemical potential mu, using both analytical and numerical methods. In particular, we study the self-consistent Boltzmann equation in the Fermi liquid framework using the quasiparticle interaction calculated to O(1/N_f), and find solutions for zero sound propagation for almost all mu > mu_c, the critical chemical potential for chiral symmetry restoration. Next we present results of a numerical lattice simulation, examining temporal correlation functions of mesons defined using a point-split interpolating operator, and finding evidence for phonon-like behaviour characterised by a linear dispersion relation in the long wavelength limit. We argue that our results provide the first evidence for a collective excitation in a lattice simulation.Comment: 18 pages, 6 figure
    corecore