9 research outputs found

    Review article: A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts

    Get PDF
    Wind and windstorms cause severe damage to natural and human-made environments. Thus, wind-related risk assessment is vital for the preparation and mitigation of calamities. However, the cascade of events leading to damage depends on many factors that are environment-specific and the available methods to address wind-related damage often require sophisticated analysis and specialization. Fortunately, simple indices and thresholds are as effective as complex mechanistic models for many applications. Nonetheless, the multitude of indices and thresholds available requires a careful selection process according to the target sector. Here, we first provide a basic background on wind and storm formation and characteristics, followed by a comprehensive collection of both indices and thresholds that can be used to predict the occurrence and magnitude of wind and storm damage. We focused on five key sectors: forests, urban areas, transport, agriculture and wind-based energy production. For each sector we described indices and thresholds relating to physical properties such as topography and land cover but also to economic aspects (e.g. disruptions in transportation or energy production). In the face of increased climatic variability, the promotion of more effective analysis of wind and storm damage could reduce the impact on society and the environment

    Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    Get PDF
    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions. (C) 2017 The Authors. Published by Elsevier B.V

    Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    Get PDF
    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse ~1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to ~0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (‘hiatus’ analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent deep-water formation in the Labrador Sea, resulting in overestimated North Atlantic SST variability. Concerning the influence of locally (isotropically) increased resolution, the ENSO pattern and index statistics improve significantly with higher resolution around the equator, illustrating the potential of the novel unstructured-mesh method for global climate modeling

    Atmospheric winter conditions 2007/08 over the Arctic Ocean based on NP-35 data and regional model simulations

    Get PDF
    Atmospheric measurements on the drifting Arctic sea ice station "North Pole-35" crossing the Eastern part of the Arctic Ocean during winter 2007/2008 have been compared with regional atmospheric HIRHAM model simulations. The observed near-surface temperature, mean sea level pressure and the vertical temperature, wind and humidity profiles are satisfactorily reproduced by the model. The strongest temperature differences between observations and the simulations occur near the surface due to an overestimated vertical mixing of heat in the stable Arctic boundary layer (ABL). The observations show very strong temperature inversions near the surface, whereas the simulated inversions occur frequently between the surface and 415 m at too high levels. The simulations are not able to reproduce the observed inversion strength. The regional model underestimates the wind speeds and the sharp vertical wind gradients. The strength of internal atmospheric dynamics on the temporal development of atmospheric surface variables and vertical profiles of temperature, wind and relative humidity has been examined. Although the HIRHAM model systematically overestimates relative humidity and produces too high long-wave downward radiation during winter, two different atmospheric circulation states, which are connected to higher or lower pressure systems over the Eastern part of the Arctic Ocean, are simulated in agreement with the NP-35 observations. Sensitivity studies with reduced vertical mixing of heat in the stable ABL have been carried out. A slower increase in the stability functions with decreasing Richardson number under stable stratification has an impact on the horizontal and vertical atmospheric structure. Changes in synoptical cyclones on time scales from 1–3 days over the North Atlantic cyclone path are generated, which influences the atmospheric baroclinic and planetary waves on time scales up to 20 days over the Arctic Ocean basin. The use of increased vertical stability in the model simulation leads to diminished planetary-scale variability over the Arctic Ocean
    corecore