2 research outputs found

    The influence of peroxy radicals on ozone production

    Get PDF
    Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der Rolle des RO x bei der troposphärischen Ozonbildung. Troposphärisches Ozon (O 3 ) spielt eine wichtige Rolle bei der Selbstreinigung der Atmosphäre. Andererseits führen erhöhte Ozonkonzentrationen zu gesundheitlichen Beeinträchtigungen beim Menschen und Schäden an Pflanzen und Umwelt. Die Anwesenheit von flüchtigen organischen Verbindungen (VOCs) führt zur Bildung von Peroxyradikalen (RO x ), die das normale photochemische Gleichgewicht zwischen Ozon und Stickoxiden zu Gunsten erhöhter Ozon­Konzentrationen verschieben. Im Rahmen der Arbeit wurde ein chemischer Verstärker zur Messung der Gesamt­Peroxyradikalkonzentration gebaut. RO x reagiert im Einlass des Gerätes mit hinzugefügtem NO und CO in einer Kettenreaktion und bildet dabei NO 2 . Dieses wird mit einem Luminoldetektor nachgewiesen. Der Detektor wird alle 2 Stunden kalibriert. Die Kettenlänge wird durch eine Kalibrierung des Gerätes mit HO 2 ­Radikalen bestimmt, die durch die Photolyse von H 2 O gebildet werden. Der Verstärkungsfaktor wurde in Bezug auf eine Querempfindlichkeit gegen Wasserdampf korrigiert. Die Messgenauigkeit ist etwa 70% bei 60% relativer Feuchte. Messungen am Taunus Observatorium auf dem Kleinen Feldberg in den Sommermonaten der beiden Jahre 1998 und 1999 werden vorgestellt. Die Ozon­ und RO x ­Konzentrationen sind gut miteinander korreliert. Allerdings ist die Tagestemperatur die für die Ozon­ und RO x ­Konzentrationen bei weitem wichtigste Einflussgröße und ist daher der beste Parameter zur statistischen Beschreibung von photochemischen Vorgängen. Auf der Grundlage der Messungen am Kleinen Feldberg wurde ein einfaches statistisches Modell zur Vorhersage des Ozonmaximums erstellt. Mit den Parametern Temperatur und Ozonkonzentration am Vortag konnte das statistische Modell bereits 80% der Variation der Ozonkonzentration erklären. Durch die Berücksichtigung der RO x ­Messungen am Vormittag konnte lediglich eine Verbesserung der erklärten Varianz um 0.5% erzielt werden. Um einen Hinweis auf den Einfluss anthropogener Emissionen zu bekommen, wurde der Wochengang von Ozon, RO x und NO x ebenfalls untersucht. Die Zunahme des Ozonmischungsverhältnisses am Wochenende bei gleichzeitigem Rückgang des Mischungsverhältnisses der Stickoxide wird damit erklärt, dass am Kleinen Feldberg eine VOC­limitierte Situation vorgefunden wurde. Die Ozonbildungsrate auf Basis der Reaktion zwischen RO x und NO wurde für Tage mit einem Maximum der Globalstrahlung über 600 W m tdatensatz niedrig (r = 0,46). Die beobachtete Änderung des Ozonmischungsverhältnisses wurde mit dem berechneten mittleren Tagesgang der Ozonbildungsrate verglichen. Die Ozonbildungsrate lag um die Mittagszeit bei etwa 5 ppbv h Verlustprozesse zu erklären. Am Abend werden etwa 2 ppbv O 3 pro Stunde abgebaut. Im Rahmen einer Messkampagne im Juni/Juli 2000 am Meteorologischen Observatorium Hohenpeißenberg fanden Messungen der Konzentrationen von RO x , OH, einer Reihe von VOCs, und anderen relevanten Spurengasen statt. Die Messdaten werden mit Hilfe eines auf der Annahme des lokalen photostationären Gleichgewichts der Radikale basierenden Modells interpretiert. Die Modellergebnisse stimmten sehr gut mit den Messungen überein. Die Überschätzung der Konzentration an 2 Tagen wurde durch den Einfluss sauerstoffhaltiger VOCs erklärt. Das '' Recycling" der HO 2 ­Radikale (die Reaktion zwischen HO 2 und NO) ist die wichtigste Quelle für OH und die wichtigste Senke für RO x . Durch die erhöhte NO­Konzentration am Vormittag wird HO 2 sehr schnell in OH umgewandelt, das wiederum für die VOC­Oxidation und RO x ­Bildung verantwortlich ist. Die wichtigste OH­Senke und RO x ­Quelle ist die Oxidation von Isopren und den Terpenen. Um die Rolle der photochemischen Ozonbildung auf regionaler Skala zu untersuchen, wurden Ozonmessungen aus ganz Deutschland auf unterschiedlichen zeitlichen und räumlichen Skalen statistisch untersucht. Die Netto­ Änderungsrate der Ozonkonzentration war tagsüber an 3 nahe zusammenliegenden Stationen sehr ähnlich. Die Ozon­Messdaten von 277 deutschen Messstationen wurden mit den an einer Waldmessstelle nahe Königstein gemessenen Ozonwerten korreliert. Die Ozonmessungen in Königstein erklären 50% der Varianz der sommerlichen Ozonmessungen zwischen 11:00 und 16:00 MEZ an Stationen, die in einem Umkreis von etwa 250 km von Königstein liegen. Auf das ganze Jahr bezogen, liegt diese ''charakteristische Entfernung" bei etwa 350 km. Diese Ergebnisse deuten darauf hin, dass die Prozesse, die einen wichtigen Einfluss auf die Ozonkonzentration ausüben, auf regionalen Skalen von einigen hundert Kilometern aktiv sind. Zusammenfassend lässt sich sagen, dass die gemessenen RO x ­Konzentrationen mit den aufgrund der Oxidation der VOCs durch OH berechneten Konzentrationen konsistent sind. Obwohl die RO x ­Konzentationen für die chemische Modellierung von Bedeutung sind, tragen RO x ­Messungen nur wenig zu einer Verbesserung der Qualität von kurzfristigen statistischen Ozonprognosen bei. Keywords: Ozone, Troposphere, Peroxy Radicals, Free Radicals, Photochemistry, Chemical Amplifie

    Hohenpeissenberg Photochemical Experiment (HOPE 2000) : measurements and photostationary state calculations of OH and peroxy radicals

    Get PDF
    Measurements of OH, total peroxy radicals, non-methane hydrocarbons (NMHCs) and various other trace gases were made at the Meteorological Observatory Hohenpeissenberg in June 2000. The data from an intensive measurement period characterised by high solar insolation (18-21 June) are analysed. The maximum midday OH concentration ranged between 4.5x106 molecules cm-3 and 7.4x106 molecules cm-3. The maximum total ROx (ROx =OH+RO+HO2+RO2) mixing ratio increased from about 55 pptv on 18 June to nearly 70 pptv on 20 and 21 June. A total of 64 NMHCs, including isoprene and monoterpenes, were measured every 1 to 6 hours. The oxidation rate of the NMHCs by OH was calculated and reached a total of over 14x106 molecules cm-3 s-1 on two days. A simple photostationary state balance model was used to simulate the ambient OH and peroxy radical concentrations with the measured data as input. This approach was able to reproduce the main features of the diurnal profiles of both OH and peroxy radicals. The balance equations were used to test the effect of the assumptions made in this model. The results proved to be most sensitive to assumptions about the impact of unmeasured volatile organic compounds (VOC), e.g. formaldehyde (HCHO), and about the partitioning between HO2 and RO2. The measured OH concentration and peroxy radical mixing ratios were reproduced well by assuming the presence of 3 ppbv HCHO as a proxy for oxygenated hydrocarbons, and a HO2/ RO2 ratio between 1:1 and 1:2. The most important source of OH, and conversely the greatest sink for peroxy radicals, was the recycling of HO2 radicals to OH. This reaction was responsible for the recycling of more than 45x106 molecules cm-3 s-1 on two days. The most important sink for OH, and the largest source of peroxy radicals, was the oxidation of NMHCs, in particular, of isoprene and the monoterpenes
    corecore