74 research outputs found

    Anti-proliferative activity of silver nanoparticles

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Enhanced Genotoxicity of Silver Nanoparticles in DNA Repair Deficient Mammalian Cells

    Get PDF
    Silver nanoparticles (Ag-np) have been used in medicine and commercially due to their anti-microbial properties. Therapeutic potentials of these nanoparticles are being explored extensively despite the lack of information on their mechanism of action at molecular and cellular level. Here, we have investigated the DNA damage response and repair following Ag-np treatment in mammalian cells. Studies have shown that Ag-np exerts genotoxicity through double-strand breaks (DSBs). DNA-PKcs, the catalytic subunit of DNA dependent protein kinase, is an important caretaker of the genome which is known to be the main player mediating Non-homologous End-Joining (NHEJ) repair pathway. We hypothesize that DNA-PKcs is responsible for the repair of Ag-np induced DNA damage. In vitro studies have been carried out to investigate both cytotoxicity and genotoxicity induced by Ag-np in normal human cells, DNA-PKcs proficient, and deficient mammalian cells. Chemical inhibition of DNA-PKcs activity with NU7026, an ATP-competitive inhibitor of DNA-PKcs, has been performed to further validate the role of DNA-PKcs in this model. Our results suggest that Ag-np induced more prominent dose-dependent decrease in cell viability in DNA-PKcs deficient or inhibited cells. The deficiency or inhibition of DNA-PKcs renders the cells with higher susceptibility to DNA damage and genome instability which in turn contributed to greater cell cycle arrest/cell death. These findings support the fact that DNA-PKcs is involved in the repair of Ag-np induced genotoxicity and NHEJ repair pathway and DNA-PKcs particularly is activated to safeguard the genome upon Ag-np exposure

    Predictive Genomics: A Post-genomic Integrated Approach to Analyse Biological Signatures of Radiation Exposure

    Get PDF
    The ultimate objective of radiation research is to link human diseases with the altered gene expression that underlie them and the exposure type and level that caused them. However, this has remained a daunting task for radiation biologists to indent genomic signatures of radiation exposures. Transcriptomic analysis of the cells can reveal the biochemical or biological mechanisms affected by radiation exposures. Predictive genomics has revolutionised how researchers can study the molecular basis of adverse effects of exposure to ionising radiation. It is expected that the new field will find efficient and high-throughput means to delineate mechanisms of action, risk assessment, identify and understand basic mechanisms that are critical to disease progression, and predict dose levels of radiation exposure. Previously, we have shown that cells responding to environmental toxicants through biological networks that are engaged in the regulation of molecular functions such as DNA repair and oxidative stress. To illustrate radiation genomics as an effective tool in biological dosimetry, an overview has been provided of some of the current radiation genomics landscapes as well as potential future systems to integrate the results of radiation response profiling across multiple biological levels in to a broad consensus picture. Predictive genomics represents a promising approach to high-throughput radiation biodosimetry.Defence Science Journal, 2011, 61(2), pp.133-137, DOI:http://dx.doi.org/10.14429/dsj.61.83

    Telomere-mediated Genomic Instability in Cells from Ataxia Telangiectasia Patients

    Get PDF
    Ataxia Telangiectasia Mutated Protein (ATM) is one of the first DNA damage sensors and is involved in telomere repair. Telomeres help maintain the stability of our chromosomes by protecting their ends from degradation. AT patients lacking the gene ATM are susceptible to acquire chromosomal anomalies and show heightened susceptibility to cancer. Here we show that cells from AT patients display considerable telomere attrition. Further, induced DNA damage and genomic instability were found to be more in DNA repair deficient ATM-/- cells (treated and untreated) than in normal cells. Results demonstrate that the cells ATM- deficient (heterozygous and homozygous) cells are sensitive to arsenite- and radiation-induced oxidative stress. Elevated numbers of chromosome alterations was seen in arsenic-treated and irradiated ATM-/- cells. The results might help in understanding the extent of susceptibility of AT patients to oxidative stress

    Telomere-Mediated Chromosomal Instability Triggers TLR4 Induced Inflammation and Death in Mice

    Get PDF
    BACKGROUND: Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC-/- mice) display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR) are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of TLR4 in telomerase deficient mTERC-/- mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+), mTERC+/- and mTERC-/- mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFalpha and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC-/-) mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-kappaB binding to its promoter by down-regulating ATF-3 in mTERC-/- macrophages. CONCLUSIONS/SIGNIFICANCE: Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-kappaB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups

    Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA

    Get PDF
    To examine the role of telomerase in normal and neoplastic growth, the telomerase RNA component (mTR) was deleted from the mouse germline. mTR-/- mice lacked detectable telomerase activity yet were viable for the six generations analyzed. Telomerase-deficient cells could be immortalized in culture, transformed by viral oncogenes, and generated tumors in nude mice following transformation. Telomeres were shown to shorten at a rate of 4.8+/-2.4 kb per mTR-/- generation. Cells from the fourth mTR-/- generation onward possessed chromosome ends lacking detectable telomere repeats, aneuploidy, and chromosomal abnormalities, including end-to-end fusions. These results indicate that telomerase is essential for telomere length maintenance but is not required for establishment of cell lines, oncogenic transformation, or tumor formation in mice
    corecore