2 research outputs found

    The Effect of Nitrogen Gas Flushing on Intermediate Products Formation in Acidogenic Stage of Anaerobic Process of Cocoa Sweatings

    Get PDF
    Cocoa is one of Indonesian-main plantation commodities. During the cocoa seed drying process, there are two types of waste that are cocoa pod and cocoa sweating. Since the organic compounds contained in cocoa sweating is high enough, it is possible to anaerobically treat this wastewater in order to recover either intermediate or end products. Preliminary study showed that the existence of H2 in the reactor would block acetic acid formation. Therefore, the aim of this current experiment was to decrease hydrogen partial pressure by flushing various nitrogen gas flow rate to shift the intermediate products during the cocoa sweating anaerobic treatment. The experiments were carried on a Circulating Bed Reactor (CBR) which contained organic compounds around 100,000 mg/l COD. Then, the reactor was flushed continuously with nitrogen gas as without flushing, 125 ml/min, 500 ml/min and 750 ml/min. The results show there was a possibility that the introduction of nitrogen gas into the reactor could shift the profile of the intermediate product formation. At lower nitrogen gas flow rate more ethanol was formed than acetate formation, although at higher nitrogen gas flow rate the formation of acetate was still low enough

    Synthesis of TiO2 Nanofiber-Nanoparticle Composite Catalyst and Its Photocatalytic Decolorization Performance of Reactive Black 5 Dye From Aqueous Solution

    Get PDF
    In this study, synthesis of TiO2 nanofiber-nanoparticle composite photocatalyst was carried out and its photocatalytic decolorization performance was investigated. TiO2 nanofibers were developed by electrospinning. The TiO2 nanoparticle films were prepared by dipping the glass substrates into a sol solution made by sol-gel method. The TiO2 nanofiber-nanoparticle composite was immobilized on glass plates and annealed at 500 °C. The effects of pH and catalyst loading were studied during a photocatalytic decolorization experiment using simulated dyeing wastewater containing Reactive Black 5 (RB5). The photocatalytic decolorization performance with 60 min of UV-irradiation time using the TiO2 nanofiber-nanoparticle composite was found to be higher (94.4%) than that of the TiO2 nanofibers (75.5%) and the TiO2 nanoparticle catalyst (74.1%). An alkaline condition and high catalyst loading were found to be preferable to achieve optimum photocatalytic decolorization of Reactive Black 5 (RB5). The TiO2 nanofiber-nanoparticle composite could be recovered after reusing multiple times through re-annealing at a high temperature. TiO2 nanofibers based on a composite catalyst that is strongly immobilized on glass plates enlarges the prospect of the photocatalytic method as a compact, practical and effective advanced treatment process for effluents from textile wastewater
    corecore