59 research outputs found

    Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms

    Get PDF
    Azacitidine is a mainstay of therapy for MDS-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their post-treatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pre- (n=449) and post- (n=289) treatment bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their post-treatment clone size on treatment outcomes. In Cox proportional hazard modeling, multi-hit TP53 mutation (HR, 2.03; 95% CI, 1.42-2.91; P<.001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P=.009), and DDX41 mutations (HR, 0.33; 95% CI, 0.17-0.62; P<.001), together with age, high-risk karyotypes, low platelet, and high blast counts, independently predicted OS. Post-treatment clone size accounting for all drivers significantly correlated with International Working Group (IWG)-response (P<.001, trend test), except for that of DDX41-mutated clones, which did not predict IWG-response. Combined, IWG-response and post-treatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, IPSS-M (c-index, 0.653 vs 0.688; P<.001, likelihood ratio test). In conclusion, evaluation of post-treatment clone size, together with pre-treatment mutational profile as well as IWG-response have a role in better prognostication of azacitidine-treated myelodysplasia patients

    Epithelial-specific histone modification of the miR-96/182 locus targeting AMAP1 mRNA predisposes p53 to suppress cell invasion in epithelial cells

    Get PDF
    Background: TP53 mutations in cancer cells often evoke cell invasiveness, whereas fibroblasts show invasiveness in the presence of intact TP53. AMAP1 (also called DDEF1 or ASAP1) is a downstream effector of ARF6 and is essential for the ARF6-driven cell-invasive phenotype. We found that AMAP1 levels are under the control of p53 (TP53 gene product) in epithelial cells but not in fibroblasts, and here addressed that molecular basis of the epithelial-specific function of p53 in suppressing invasiveness via targeting AMAP1. Methods: Using MDA-MB-231 cells expressing wild-type and p53 mutants, we identified miRNAs in which their expression is controlled by normal-p53. Among them, we identified miRNAs that target AMAP1 mRNA, and analyzed their expression levels and epigenetic statuses in epithelial cells and nonepithelial cells. Results: We found that normal-p53 suppresses AMAP1 mRNA in cancer cells and normal epithelial cells, and that more than 30 miRNAs are induced by normal-p53. Among them, miR-96 and miR-182 were found to target the 3′-untranslated region of AMAP1 mRNA. Fibroblasts did not express these miRNAs at detectable levels. The ENCODE dataset demonstrated that the promoter region of the miR-183-96-182 cistron is enriched with H3K27 acetylation in epithelial cells, whereas this locus is enriched with H3K27 trimethylation in fibroblasts and other non-epithelial cells. miRNAs, such as miR-423, which are under the control of p53 but not associated with AMAP1 mRNA, demonstrated similar histone modifications at their gene loci in epithelial cells and fibroblasts, and were expressed in these cells. Conclusion: Histone modifications of certain miRNA loci, such as the miR-183-96-182 cistron, are different between epithelial cells and non-epithelial cells. Such epithelial-specific miRNA regulation appears to provide the molecular basis for the epithelial-specific function of p53 in suppressing ARF6-driven invasiveness

    The use of hyperoxia to induce chronic mild oxidative stress

    No full text
    The retinal pigment epithelial (RPE) cell is exposed to chronic oxidative stress in part from exposure to high partial pressures of oxygen and in part, from its high level of oxygen metabolism which generates large amounts of reactive oxygen intermediates (ROI) An alternative and perhaps more applicable approach to studying the effects of oxidative stress on RPE cells would apply chronic and lower levels of oxidative stress than the acute levels resulting from chemical oxidants. Recently, von Zglinicki et al. used chronic hyperoxia treatment to induce long term oxidative stress on lung fibroblasts METHODS Cell culture: The RPE340 cell line from one globe of a 1-year-old trauma victim was propagated as previously described Methods: RPE340 cells and WI38 lung fibroblasts were grown in normal oxygen (20% O 2 ) and hyperoxia (40% O 2 or 60% O 2 ). After cell viability was examined, the levels of reactive oxygen intermediates (ROI) by flow cytometry and heme oxygenase-1 (HO-1) mRNA by northern analysis were measured as markers of oxidative stress in both cell types. Proliferative ability and gene expression pattern of growth factors were studied to demonstrate the phenotypic changes induced by mild oxidative stress upon these cells. Results: While decreased by 60% O 2 , 40% O 2 did not affect viability in both cell types, ROI production and HO-1 mRNA expression were elevated in hyperoxia compared to controls, but were inhibited with the antioxidant dehydro-ascorbic acid (DHA). The proliferation of cells by hyperoxia was inhibited in both cell types. The expression of growth factors induced by hyperoxia was cell type dependent. Fibroblast growth factor-2 mRNA was unchanged in RPE cells, but was increased in fibroblasts. Transforming growth factor-β2 was decreased in RPE cells, but unchanged in fibroblasts. Vascular endothelial growth factor was downregulated in RPE cells, while upregulated in fibroblasts. Connective tissue growth factor was decreased in RPE cells, but was unchanged in fibroblasts. Conclusions: The results demonstrate that hyperoxia induces mild oxidative stress which alters the phenotype of cells in a cell type specific manner

    Necessity of p53-binding to the CDH1 locus for its expression defines two epithelial cell types differing in their integrity

    Get PDF
    TP53 mutation (i.e., loss of normal-p53) may evoke epithelial-mesenchymal transition (EMT), which was previously attributed to loss of certain miRNAs. However, not all epithelial cells undergo EMT upon TP53 mutation, and the p53-miRNA axis may not fully explain p53 function in epithelial integrity. We here show two modes of epithelial integrity: one involves p53-binding to a nucleotide region and the other does not. In the former, p53 binds to the CDH1 (encoding E-cadherin) locus to antagonize EZH2-mediated H3K27 trimethylation (H3K27me3) to maintain high levels of acetylation of H3K27 (H3K27ac). In the latter, the same locus is not highly acetylated at H3K27, and does not allow p53-binding, nor needs to antagonize EZH2. We moreover demonstrated that although the CDH1 locus in the p53-independent cells, but not in fibroblasts, becomes high-H3K27ac by butyrate and allows p53-biniding, their CDH1 expression does not become dependent on p53. Our results identified novel modes of the epithelial integrity, in which the same epithelial-specific gene locus exhibits different requirement for p53 with different histone modifications among different epithelial cells to warrant its expression

    Engagement of Overexpressed Her2 with GEP100 Induces Autonomous Invasive Activities and Provides a Biomarker for Metastases of Lung Adenocarcinoma

    Get PDF
    Overexpression of Her2/ErbB2/Neu in cancer is often correlated with recurrent distant metastasis, although the mechanism still remains largely elusive. We have previously shown that EGFR, when tyrosine-phosphorylated, binds to GEP100/BRAG2 to activate Arf6, which induces cancer invasion and metastasis. We now show that overexpressed Her2 in lung adenocarcinoma cells also employs GEP100. Like EGFR-GEP100 binding, this association is primarily mediated by the pleckstrin homology (PH) domain of GEP100 and Tyr1139/Tyr1196 of Her2. Tyr1139/Tyr1196 are autonomously phosphorylated, when Her2 is overexpressed. Accordingly, invasive activities mediated by the Her2-GEP100 pathway are not dependent on external factors. Blocking Her2-GEP100 binding, as well as its signaling pathway all inhibit cancer invasive activities. Moreover, our clinical study indicates that co-overexpression of Her2 with GEP100 in primary lung adenocarcinomas of patients is correlated with the presence of their node-metastasis with a statistical significance. Since the GEP100 PH domain interacts with both Her2 and EGFR, targeting this domain may provide novel cancer therapeutics

    Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer

    Get PDF
    Acquisition of mesenchymal properties by cancer cells is critical for their malignant behaviour, but regulators of the mesenchymal molecular machinery and how it is activated remain elusive. Here we show that clear cell renal cell carcinomas (ccRCCs) frequently utilize the Arf6-based mesenchymal pathway to promote invasion and metastasis, similar to breast cancers. In breast cancer cells, ligand-activated receptor tyrosine kinases employ GEP100 to activate Arf6, which then recruits AMAP1; and AMAP1 then binds to the mesenchymal-specific protein EPB41L5, which promotes epithelial-mesenchymal transition and focal adhesion dynamics. In renal cancer cells, lysophosphatidic acid (LPA) activates Arf6 via its G-protein-coupled receptors, in which GTP-G alpha 12 binds to EFA6. The Arf6-based pathway may also contribute to drug resistance. Our results identify a specific mesenchymal molecular machinery of primary ccRCCs, which is triggered by a product of autotaxin and it is associated with poor outcome of patients
    corecore