2,888 research outputs found

    Contrasting the capabilities of building energy performance simulation programs

    Get PDF
    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability

    Atmospheric Water Harvesting: An Experimental Study of Viability and the Influence of Surface Geometry, Orientation, and Drainage

    Get PDF
    Fresh water collection techniques have gained significant attention due to global dwindling of fresh water resources and recent scares such as the 2011-2017 California drought. This project explores the economic viability of actively harvesting water from fog, and techniques to maximize water collection. Vapor compression and thermoelectric cooling based dehumidifier prototypes are tested in a series of experiments to assess water collection capability in foggy environments, and what parameters can increase that capability. This testing shows an approximate maximum collection rate of 1.25 L/kWh for the vapor compression prototype, and 0.32 L/kWh for the thermoelectric cooling prototype; compared to 315 L/kWh for desalination or 12 L/m2/day for passive meshes. Exploration of parameters on the thermoelectric cooling prototype show a potential increase in water collection rate of 29% with the addition of a Teflon coating to the collection surface, 15% by clearing the collection surface, and 89% by tilting certain collection surfaces by 60-75°. In combination, these parameters could push active atmospheric water harvesting into economic viability where significant infrastructure investment is not feasible

    A tool for subjective and interactive visual data exploration

    Get PDF
    We present SIDE, a tool for Subjective and Interactive Visual Data Exploration, which lets users explore high dimensional data via subjectively informative 2D data visualizations. Many existing visual analytics tools are either restricted to specific problems and domains or they aim to find visualizations that align with user’s belief about the data. In contrast, our generic tool computes data visualizations that are surprising given a user’s current understanding of the data. The user’s belief state is represented as a set of projection tiles. Hence, this user-awareness offers users an efficient way to interactively explore yet-unknown features of complex high dimensional datasets

    Letter from William T. Hand to James B. Finley

    Get PDF
    Rev. Hand writes to Finley concerning two vacancies in the office of Associate Judge. He urges Finley to use his influence to keep a Baptist and a Presbyterian from getting the offices. Instead of these men, Hand wants John Bryan and Salmon Reckard. They are both true Methodists and true Whigs. Abstract Number - 305https://digitalcommons.owu.edu/finley-letters/1505/thumbnail.jp

    Simulation-assisted control in building energy management systems

    Get PDF
    Technological advances in real-time data collection, data transfer and ever-increasing computational power are bringing simulation-assisted control and on-line fault detection and diagnosis (FDD) closer to reality than was imagined when building energy management systems (BEMSs) were introduced in the 1970s. This paper describes the development and testing of a prototype simulation-assisted controller, in which a detailed simulation program is embedded in real-time control decision making. Results from an experiment in a full-scale environmental test facility demonstrate the feasibility of predictive control using a physically-based thermal simulation program

    Letters between John T. Hand and William Kerr\u27s secretary

    Get PDF
    Letters concerning a position in the music department at the Agricultural College

    Numerical simulation of transom-stern waves

    Full text link
    The flow field generated by a transom-stern hullform is a complex, broad-banded, three-dimensional phenomenon marked by a large breaking wave. This unsteady multiphase turbulent flow feature is difficult to study experimentally and simulate numerically. The results of a set of numerical simulations, which use the Numerical Flow Analysis (NFA) code, of the flow around the Model 5673 transom stern at speeds covering both wet- and dry-transom operating conditions are shown in the accompanying fluid dynamics video. The numerical predictions for wet-transom and dry-transom conditions are presented to demonstrate the current state of the art in the simulation of ship generated breaking waves. The interested reader is referred to Drazen et al. (2010) for a detailed and comprehensive comparison with experiments conducted at the Naval Surface Warfare Center Carderock Division (NSWCCD).Comment: Fluid Dynamics Video for 2010 APS Division of Fluid Dynamics Gallery of Fluid Motion include
    • …
    corecore